Tommaso Mannelli Mazzoli

TU Wien, Vienna, Austria

American Mathematical Monthly Problems

Solutions to selected problems from the American Mathematical Monthly. If you want to comment or share solutions, contact me at tommaso.mazzoli@tuwien.ac.at

Useful Resources

Problem Solution
Problem 12407 by an anonymous contributor (New Delhi, India)
Let \(r\) be a positive real. Evaluate \[ \int_0^\infty \frac{x^{r-1}}{(1+x^2)(1+x^{2r})} \mathop{}\!\mathrm{d} x \]
PDF
Problem 12406 by R. Mortini and R. Rupp (Luxembourg/Germany)
For fixed \(p \in \mathbb{R}\), find all functions \(f : [0, 1] \to \mathbb{R}\) that are continuous at 0 and 1 and satisfy \[ f(x^2) + 2p \cdot f(x) = (x + p)^2 \] for all \(x \in [0, 1]\).
PDF
Problem 12388 by A. Garcia (France)
\[ \int_0^a \frac{\ln^2(x)\arctan(x)}{x^2-2\cos(\alpha)x+1} \mathop{}\!\mathrm{d} x \]
PDF
Problem 12243 by M. Lawrence Glasser (USA)
\[ I_a = \int_0^a \frac{t}{\sinh t \, \sqrt{1-\frac{\sinh^2(t)}{\sinh^2(a)}}} \mathop{}\!\mathrm{d} t \]
PDF
Problem 12229 by Moubinool Omarjee (France)
\[ 30240\left(\int_0^1 xf(x) \mathop{}\!\mathrm{d} x\right)^2 \le \int_0^1 \left(f''(x) \right)^2 \mathop{}\!\mathrm{d}x \]
PDF
Problem 12221 by N. Batir (Turkey)
\[ \int_0^1 \frac{\ln(x^6+1)}{x^2+1} \mathop{}\!\mathrm{d} x = \frac{\pi\ln 6 }{2}- 3G \] where \(G\) is Catalan's constant.
PDF
Problem 12142 by J. A. Scott (UK)
\[ \int_a^b ( f''(x))^2 \mathop{}\!\mathrm{d} x \ge \frac{980}{\big(8\sqrt 2 -1\big)^2} \frac{(f(a)+f(b))^2}{(b-a)^3} \]
PDF