Tommaso Mannelli Mazzoli

TU Wien, Vienna, Austria

Bus Driver Scheduling Problem

Problem Definition

The Bus Driver Scheduling Problem (BDSP) is a complex combinatorial optimization problem in public transportation. Given predetermined bus tours, the goal is to create driver shifts that minimize total cost while satisfying operational constraints.

Download Instance Collection

The complete BDSP instance collection is available for download:

File Description Size
collection.tar.gz Complete collection of 285 BDSP instances 80 MB

Instance Sets

Real-world Instances (50 instances)

Instances range from 8 tours with 73 legs to 98 tours with 924 legs, derived from actual bus transportation networks. Lower bounds are computed using Branch-and-Price (BP).

The table shows the gap between best known solutions and lower bounds: \[\text{GAP} = \frac{\text{solution} - \text{bound}}{\text{bound}} \times 100\%\]

Rows highlighted in green with 0.00% gap represent proven optimal solutions.

Instance Tours Legs Best Solution Lower Bound Gap (%) Algorithm
realistic_10_1 8 73 14417 14417.00 0.00 BP
realistic_10_2 8 77 14572 14572.00 0.00 BP
realistic_10_3 8 81 15103 15103.00 0.00 BP
realistic_10_4 8 78 15148 15148.00 0.00 BP
realistic_10_5 8 76 14306 14306.00 0.00 BP
realistic_20_6 17 169 30427 30427.00 0.00 BP
realistic_20_7 17 166 30610 30587.67 0.07 BP
realistic_20_8 17 165 30437 30437.00 0.00 BP
realistic_20_9 17 160 29520 29520.00 0.00 BP
realistic_20_10 17 174 30480 30480.00 0.00 BP
realistic_30_11 29 273 48731 48677.32 0.11 BP
realistic_30_12 29 283 51115 50920.05 0.38 BP
realistic_30_13 29 265 50962 50780.95 0.36 BP
realistic_30_14 29 256 48802 48444.75 0.73 BP
realistic_30_15 29 265 49622 49548.86 0.15 BP
realistic_40_16 39 367 66417 66301.80 0.17 BP
realistic_40_17 39 356 67695 67595.47 0.15 BP
realistic_40_18 39 346 67424 67059.64 0.54 BP
realistic_40_19 39 358 66478 66424.70 0.08 BP
realistic_40_20 39 363 66923 66519.74 0.60 LNS
realistic_50_21 50 437 83148 82618.88 0.64 BP
realistic_50_22 50 457 84836 84575.75 0.31 BP
realistic_50_23 50 456 83595 83414.95 0.22 BP
realistic_50_24 50 447 85628 85326.67 0.35 BP
realistic_50_25 50 458 84498 84274.42 0.26 BP
realistic_60_26 58 517 99403 99289.61 0.11 BP
realistic_60_27 58 534 101209 100368.75 0.83 BP
realistic_60_28 58 546 99178 99004.73 0.17 BP
realistic_60_29 58 528 99373 98991.82 0.38 BP
realistic_60_30 58 549 99472 99015.22 0.46 BP
realistic_70_31 70 629 116863 94569.16 19.08 BP
realistic_70_32 70 652 118472 118305.82 0.14 BP
realistic_70_33 70 643 119073 92676.61 22.17 LNS
realistic_70_34 70 636 118983 117298.42 1.42 BP
realistic_70_35 70 637 118406 117565.69 0.71 LNS
realistic_80_36 79 764 133384 107444.68 19.45 BP
realistic_80_37 79 739 134813 84899.52 37.02 BP
realistic_80_38 79 741 135354 135133.51 0.16 BP
realistic_80_39 79 713 135508 109028.34 19.54 BP
realistic_80_40 79 732 133510 95989.84 28.10 BP
realistic_90_41 88 810 149342 105743.38 29.19 BP
realistic_90_42 88 841 149985 119680.32 20.21 BP
realistic_90_43 88 826 151170 94474.61 37.50 LNS
realistic_90_44 88 849 149956 82276.30 45.13 BP
realistic_90_45 88 832 151325 122065.95 19.34 BP
realistic_100_46 98 924 165821 80858.12 51.24 LNS
realistic_100_47 98 860 165268 108262.39 34.49 BP
realistic_100_48 98 906 167760 108025.40 35.61 LNS
realistic_100_49 98 924 168925 117095.14 30.68 LNS
realistic_100_50 98 876 165554 100052.18 39.57 LNS

Large Instances (15 instances)

Larger real-world instances with up to 250 tours and over 2300 legs. Solutions obtained using Large Neighborhood Search (LNS).

Instance Tours Legs Best Solution Algorithm
realistic_150_51 148 1371 251712 LNS
realistic_150_52 148 1403 257458 LNS
realistic_150_53 148 1383 257146 LNS
realistic_150_54 148 1375 256662 LNS
realistic_150_55 148 1376 254608 LNS
realistic_200_56 197 1806 339683 LNS
realistic_200_57 197 1840 341608 LNS
realistic_200_58 197 1820 336886 LNS
realistic_200_59 197 1814 338072 LNS
realistic_200_60 197 1892 336906 LNS
realistic_250_61 250 2323 427739 LNS
realistic_250_62 250 2329 429168 LNS
realistic_250_63 250 2280 427930 LNS
realistic_250_64 250 2313 429545 LNS
realistic_250_65 250 2339 426803 LNS

References

  1. Kletzander, L., & Musliu, N. (2020). Solving large real-life bus driver scheduling problems with complex break constraints. ICAPS 2020. DOI
  2. Kletzander, L., Mazzoli, T. M., & Musliu, N. (2022). Metaheuristic algorithms for the bus driver scheduling problem with complex break constraints. GECCO 2022. DOI
  3. Mazzoli, T. M., Kletzander, L., Van Hentenryck, P., & Musliu, N. (2024). Investigating Large Neighbourhood Search for Bus Driver Scheduling. ICAPS 2024. DOI
  4. Mannelli Mazzoli, T., Kletzander, L., Musliu, N., & Smith-Miles, K. (2024). Instance Space Analysis for the Bus Driver Scheduling Problem. PATAT 2024. PDF