SOLUTION TO PROBLEM 12229

TOMMASO MANNELLI MAZZOLI

Proposed by M. Omarjee (France).
Let f:[0,1] — R be a function that has continuous derivatives and that satisfies

f(0) = f(1) and f01 f(z)dxz = 0. Prove
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Solution. By the Cauchy-Schwarz inequality

( / w)gl) dx)2 < | () e / "Pa)de for every g € L2(0,1).

After applying integration by parts twice, we find
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= g(1)f'(1) = g(0)f(0) = f(0)[g'(1) — ¢g'(0)] + /O g"(z) f(z) da.
Let

We have that:
* 9(0) =g(1) = 0;
* ¢'(0) = ¢'(1);
o ¢'(x) ==z for all z € 0,1].

Thus,
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Therefore,
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