
Hybrid methods for the Bus
Driver Scheduling Problem

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dott.mag. Tommaso Mannelli Mazzoli
Registration Number 12046158

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Professor Dr. Nysret Musliu

The dissertation has been reviewed by:

Maria Teresa Ortuño Andrea Schaerf

Vienna, June 26, 2025
Tommaso Mannelli Mazzoli

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Dott.mag. Tommaso Mannelli Mazzoli

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die ver-
wendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen, die
ohne substantielle Änderungen übernommen wurden, habe ich jeweils die von mir formu-
lierten Eingaben (Prompts) und die verwendete IT-Anwendung mit ihrem Produktnamen
und Versionsnummer/Datum angegeben.

Wien, 26. Juni 2025
Tommaso Mannelli Mazzoli

iii

Acknowledgements

It’s half past six, and I’m resting on the couch, waiting for the dance class. Misko sat
close to me, and I asked him, “Why do you do yoga every day?” He replied,“It makes
my life easier” . That simple statement made me wonder: “what made my PhD
easier?”. I hope to answer that question in the following pages.

The person I am most grateful to is my mother, Monica. She made so many sacrifices for
me that I will never fully repay her for everything I have received. She has dedicated her
life to my well-being and keeps taking care of me. Grazie mamma. Thank you also to
my famiglia: Anna, Carlo, Gaia, Lapo, Michela, for being close to me all this time.

I want to thank Eleonora Nesterini. Thank you for being there. Thank you for being
the “little star I bring in the moments when I have no light”. Thank you for kindly
listening to my cries and my angry words without judgment. Your unique sweetness in
empathising is splendid, and I am grateful to have experienced it. You are special, and
this document belongs to you too. Indeed, this document wouldn’t exist without you. I
am grateful to have you in my life. You made my life much easier.

My guru is without a doubt Fulvio Gesmundo, who I consider the most intelligent person
that I have ever met in my life1. I am grateful to have you in my life and consider you a
great friend.

In Vienna My supervisor, Nysret Musliu, is a great and kind man. He can calm me
down and solve the most difficult problems that seem unsolvable to me. I am honoured
to have met him and to have been one of his PhD students. Thanks to his benevolence, I
felt respected and appreciated. We discussed everything, from the best Asian restaurant
in town to the most complicated geopolitical issues. I still remember several times he
found me at the office overworking, and he told me to go home and not to work anymore,
saying that it was good enough. This is precious advice and often not valued enough.
Sometimes, I even thought that our relationship was more like that of a father and son.
You made my PhD easier, faleminderit shumë.

My moral cosupervisor is Lucas Kletzander, who helped me almost every week deep into
the most tricky bit of Python code. Lucas, you made my PhD so much easier. Herzilchen
Dank

1We still have to break the tie with Pietro tho

v

Thanks, Ida and Tobias, for sharing most of our working lunch with me every day for
the last three years. You showed incredible patience with me, and I appreciate it. You
made my life easier2.

I also want to thank the people at the office who made this journey more bearable:
Aleksandar, Anton, Anouk, Davide ML, Davide S, Ennio, Esther, Federica, Francesco,
Friedrich, Giovanni, Ignacio, Mark, Marton, Michele, Nelson, Oliviero, Petra, Sarah,
Sanja, and Shqiponja.

Thanks to my colleagues Felix (and Eni), Florian, Francesca, Luca, Marc, Mimi, Patrick,
and Roberto for our nice time together.

A very special thanks to Markus Hecher and Bettina for helping me survive the last days
of December 2023, literally. Vielen Dank.

Many other people tagged along during this journey on various occasions. Thanks to
Altana, Ambika, Ferdinando, Jelena, Khaled, Margarita, and Orion. Thanks also to
Tatyana for teaching me the German language.

Down under in Australia From March to June 2023, I had the fantastic opportunity
to go to Melbourne, Australia, for three months. First, thank you, Kate Smith-Miles,
for being my host, both at your office and at your place. I will keep the precious video
where I play the piano with your husband. And your garlic bread was so delicious!

Over there, I met amazing people who contributed to making me love that stunning
place. I want to thank Hritika for introducing me to the campus and sharing so much in
so little time. Then, thank you, Jee, for the fun time playing table tennis, joking about
tiger parents and the quirky night experiences in CBD. I am grateful to Eliana for her
kindness and our chismes.

Thank you, Gianni, for inviting me to the Karate class at World Shotokan Karate-DO in
Coburg. It was a fascinating experience, thanks to sensei John Haitidis’s great words.

Thank you, Alessia, Alysson (thanks for the T-shirt, I still have it!), Alberto, Charlotte,
Connor, Eric, Franklyn, Giulio, Harry, Henk, Jip, Mazzy, Vera, Yi.

Thank you Prof. Jen Martin for the splendid presentation about Science communication.
It was a very precious resource, like your podcast Let’s Talk SciComm. Also, thank you
for having told me about Randy Olson and the strategy of “And, But, Therefore”, rather
than the boring (albeit common) “And And And”.

Thanks to Laura and her friends Esteban and Olivia. The karaoke night at the student
hotel was so much fun!

Barcelona From September to December 2023, I had the opportunity to do a second
research stay. Thank you, Christian Blum, for hosting me, working with me with

2Except when we had to decide where to have lunch and the several initial options narrowed down to
that tasteless and bland place that I don’t want to mention.

https://creators.spotify.com/pod/profile/letstalkscicomm/

enthusiasm, and having the enormous patience to tolerate my personal and frequent
questions. Thanks also to Pedro Pablo Pinacho-Davidson for collaborating with me 3

The IIIA is an amazing place to do a research stay at. Thanks to people like Athina,
Björn, Camilo, Elifnaz, Israel, Jairo, Jaume, Mehmet, Rocco, Shuxian, and Stephanie, I
enjoyed my time there, it was great fun. At IA, everyone was so sweet to me; even the
keeper who used to kick me out of the building at 20:00 did it with care and a smile.

Moltes gràcies to my flatmate Mireia, who was my mentor there and who taught me
many paramount things. I still remember when we were meditating, and she asked me
“How do you know you have a hand without touching or moving it?”. Deep.

Thank you, Claudia, for the nice time we spent together.

Dancing I believe that dancing was a game-changing event in my life for three reasons:

1. Changing environment and people help disconnect from the PhD problems

2. You start seeing your body in a different way and tolerating more and more the
image you see in the mirror

3. You meet many people who you share a common passion with

My first experience with bachata was at Miss Collins, a club in Melbourne that was
organising free bachata classes. I want to thank them because their free class made me
discover a new world, a new Tommaso. Thank you, Deana and Yohann and the Bachata
BEATS staff: Blagoja, Ivan, Laura, and Rina.

While in Barcelona, I spent most of my free time at the Sant Cugat Academy, where I
started dancing salsa and improved my bachata skills. Thanks, Dani, Eudys, Mei, and
all the smiling fun people I met there.

When I returned to Vienna, I kept dancing at Mydance dance school. I am deeply grateful
to Sergio Mendoza Matos and Zsuzsanna “Beige” Böjte for teaching me the basics and the
joy of dancing Sensual bachata and Cuban salsa with incredible professionalism, passion,
and enthusiasm. Thank you to the other great teachers: Ada, Alex, Dani, Deedee, and
Sandra. I appreciate the kindness of Amal, Iris, Lucia, Olena, Ricardo, and Shuntaro.
Thanks to all the people who I met there. Frankly, I don’t even remember most of their
names (sometimes you never ask, sometimes you forget). However, they made my life
easier. Special thanks to Caterina Carbone: she is such a fun and funny person, and I
really enjoy talking to her. I am glad to have met you, Cate!

I am grateful to the owner of the (unfortunately now torn down) Rumba y Mambo disco
bar on top of the Danube. There, I developed a passion for Dominican bachata4, which

3And for dealing with my attempts of speaking Chilean Spanish!
4Which, of course, I should call just bachata, but this is a topic for another day :)

https://www.instagram.com/bachatabeatsaus/
https://www.instagram.com/bachatabeatsaus/
https://scdacademy.com/
https://www.instagram.com/mydance.vienna/

helped me accept my body and enjoy even the darkest of the days. Thank you, Eva
Vladimirova Manasieva and every member of Bachata con Sazon, for transmitting your
passion to me: esa es una vaina muy dura. Your event in September 2024 was astonishing,
and thanks to you, I got to know fabulous dancers such as El Guarachero, Ramon, Nushi,
John, Junior, and JR el Artista. Thank you also, Karina and Cata, for teaching and
helping me polish my style.

Latin transformation I will never forget my Melbourne flatmates Camila and Estefa-
nia, who introduced me to the Latin American culture. In particular, to the beauties of
Colombia. They taught me the values of enjoying life, going out with friends, smiling and
chilling. Thanks to you and the fantastic people I have met, like Connie, Leidy, Marcela,
Sara, Sergio, Valentina, and Victoria. Even if I don’t remember the taste of the Vegan
Ajaco, I can say for sure that you changed my life. Muchisimas gracias.

During the summer of 2024, I had the chance to explore the Latin American community
in Vienna. The amount of great time I had was indescribable; this was by far the most
fun summer of my whole life. A big thanks go to las chiquillas, in particular to Marisol,
Ignacia, Tamara, Melisa, and Daniela.

Chess Chess is one of those hobbies where you can meet everybody, and your opponent
can be anyone, from an 8-year-old girl to an 80-year-old grandpa.

I experienced this when I arrived at the Melbourne Chess Club (MCC). I used to spend
all my Saturdays and Tuesdays there (I remember that I even postponed a date because
of a chess tournament; what a nerd. . .). At MCC, I met a group of people who made me
feel special and appreciated. I hope to find another chess club as authentic and special as
that one. Thanks for making my life easier, particularly for Alex Khamatgaleev5, Colin,
and Minnie (hopefully, we will be starting our postal correspondence chess match again).
Special acknowledgement to Dr Michael Baron, who has been a great chess friend of
mine!

A big shout-out to my chess buddy, Robin Coutelier. I am grateful for the many times I
needed a distraction, and you were there. I’ll never forget our chess tournament at the
Vienna Central Cemetery (and the cool gadgets we got) and our frustration after the
blitz tournaments that didn’t go as expected. You made my life easier, Merci beaucoup.

Thanks also to Philipp Scheffknecht for organising the TU Wien Schach Club and the
nice guys I met there. Thanks to Aris and Daniel. Btw, Paul & Alex, where the heck are
you guys? >:D

Miscellaneous When I was 13 years old, I took the final exam of middle school. I
got the lowest possible grade (sufficiente). After that, my maths teacher suggested that
I attend an easier school, not a scientific one because math was not my strong suit

5The family name is too cool not to be mentioned.

https://bachataconsazon.com/

(according to her). I still remember that day and my disappointment about that. Still, I
decided to attend the scientific high school I wanted. After 18 years, I hope this final
document proves her wrong. Maria Clara, I am glad that I did not believe you.
Geraldine Fitzpatrick changed my life, sic et simpliciter. I attended her course From
Surviving to Thriving during the pandemic and the amount of things I learnt is unbeliev-
able. I learnt about values, strenghts, gratitude, habits, boundaries, saying no. I started
to know myself more. And thanks to your resources, I survived to the PhD. Thanks to
Marta Cecchinato and its booklet Digital Wellbeing (extremely useful for whoever lives
in 2025 with a smartphone). Thanks to Zoë J Ayres for her book Managing Your Mental
Health During Your PhD, a precious resource for every PhD Student (and not only. . .).
Thanks to all my friends in Florence. In particular, I thank Alessandro and Guido for
making my life so funny!
Thanks to all the others I forgot to mention!
Thank you to all VGSCO members, and a special thanks to Immanuel Bomze for solving
the AMM problem 12480 with me. I will state it here since it is our “first paper” together:

American Mathematical Monthly problem

Problem 12480, Proposed by F. Stanescu (Romania)

Let f and g be two nonnegative functions on [0, 1] with f(0) = g(0) = 1, and let
h : [0, 1]→ R be nondecreasing. Suppose that f is convex, and g is concave. Prove∫︂ 1

0
g(x) dx

∫︂ 1

0
f(x)h(x) dx ≥

∫︂ 1

0
f(x) dx

∫︂ 1

0
g(x)h(x) dx

If you feel like having a solution, feel free to drop me an email :)
I acknowledge the funding provided by the doctoral program Vienna Graduate School on
Computational Optimization through Austrian Science Foundation (FWF), under grant
No.: W1260-N35 (https://vgsco.univie.ac.at/).
Last but not least, this journey would not have been possible without two people: my
therapist, Carla, and my general practitioner, Ursula. Thank you for taking care of
my mind and my body. Thank you also, Sara and Benedetta, for being my temporary
therapists during the darkest period of my life.
Finally, I want to acknowledge that any journey has challenges; mine is no exception.
I have made things very complicated, and I have hurt people. They were showing me
something, and I couldn’t see it. I beg your pardon and sincerely apologise for the issues
I have created. I apologise to Anna F, Anna R, Clemens, Karen, Josephine, Ippolita,
Raisa, Sasha, and Ziruo.

Reviewers If I were a serious person, I would probably say something dry and formal,
along the lines of “Thanks to the two reviewers for their time. . . yada yada yada. . . ”.

https://www.geraldinefitzpatrick.com/
https://www.cecchinato.me/
https://www.zjayres.com/
https://vgsco.univie.ac.at/

However, as you might know, I don’t like conventions (or maybe I’m just not a serious
person).

Thank you, Andrea Schaerf. I remember our first meeting and told you the neighbourhood
was working well. You interrupted me and asked, “Why is that so?”. I was confused,
and you kept asking “What makes the neighbourhood good? What is the reason?”. This
changed my point of view on the problems and the questions I should ask myself. I also
remember you taught me how to properly explore the neighbourhood (not starting from
the first index, to avoid bias). You made me a better scientist. Thank you.

Thank you, Maria Teresa Ortuño. You visited the University of Florence in 2018,
introduced the topic of Optimisation, and proposed the double master’s agreement.
Taking that opportunity rocked me to my core. Little did I know that I would have
ended up doing a PhD in Optimisation in your field. Thank you for your kindness and
contagious smile.

Abstract

The Bus Driver Scheduling Problem (BDSP) is a combinatorial optimisation problem
that involves assigning bus drivers to predetermined bus tours. The objective function
takes into account the operational cost as well as driver satisfaction. This problem is
heavily constrained due to stringent rules derived from laws and collective agreements.

In the literature, many methods exist to solve variants of the problem, but often they do
not optimally solve larger instances. This causes the need for new, efficient methods to
solve large-scale problem instances. In this thesis, we focus on a challenging variant of this
problem based on the Austrian collective agreement. This variant has been introduced
recently in the literature, and exact and heuristic methods have been developed. While
these approaches give very good results, optimal solutions have not yet been found for
large instances.

In this thesis, we proposed new metaheuristic approaches based on Tabu Search (TS)
and Iterated Local Search (ILS). After thoroughly evaluating and comparing various
algorithmic components, our experiments showed that TS scales very well to larger
instances that are out of reach for exact methods.

Then, we presented a comprehensive study of a Large Neighbourhood Search (LNS)
framework that uses Branch and Price (B&P) or Column Generation (CG) for the
repair phase to solve the BDSP. We studied several variants of the LNS, as well as a
deeper integration of B&P and LNS, in which we store the generated columns from the
subproblems, and reuse them for other subproblems or to find better global solutions.
Our analysis shows that this strategy improves several best-known solutions even more
than B&P or LNS on their own, constituting a new state-of-the-art solution for this
problem. This idea has still not been intensively explored and can be applied to other
scenarios or to other optimisation problems.

Finally, we introduced an instance generator capable of producing new instances that
are either synthetic or real-world-like. By doing so, we can expand the benchmark set of
instances. Using those new instances in combination with the recently developed Instance
Space Analysis (ISA) methodology, we gained insights into the strengths and weaknesses
of our methods compared with the state-of-the-art algorithms.

xi

Contents

Abstract xi

Contents xiii

1 Introduction 1
1.1 Research Goals . 2
1.2 Summary of Contributions . 5
1.3 Publications . 5
1.4 Organisation . 6

2 Preliminaries 7
2.1 Notations, Symbols, and Definitions 7
2.2 Instance Space Analysis . 9
2.3 Experiments . 11

3 The Bus Driver Scheduling Problem 13
3.1 Background . 13
3.2 Problem Description . 14
3.3 Benchmark Instances . 22

4 Related Work 23
4.1 Variants . 23
4.2 Exact methods . 25
4.3 Heuristic and Hybrid methods . 26

5 Metaheuristics for the BDSP 29
5.1 Related work . 29
5.2 Tabu Search . 31
5.3 Iterated Local Search . 35
5.4 Conclusions . 47

6 Large Neighbourhood Search for the BDSP 49
6.1 Large Neighbourhood Search . 49
6.2 Integration of Column Generation and Large Neighbourhood Search . 54

xiii

6.3 Experiments . 56
6.4 Conclusions . 70

7 ISA for the BDSP 71
7.1 Mathematical preliminaries . 72
7.2 Instance Generator . 72
7.3 Instance Space Analysis . 81
7.4 Experiments . 85
7.5 Conclusions . 90

8 Conclusions 93
8.1 Research contributions . 93
8.2 Results . 94
8.3 Future directions . 95

Overview of Generative AI Tools Used 97

List of Figures 99

List of Tables 101

List of Algorithms 103

Glossary 105

Acronyms 107

Bibliography 109

CHAPTER 1
Introduction

The Bus Driver Scheduling Problem (BDSP) is a combinatorial optimisation problem with
the goal of assigning bus drivers to vehicles in a company’s regular daily operations. The
scheduled bus tours are fixed in advance and will remain unchanged. The BDSP is one
of the stages in the Transportation Network Planning System [IRDGM15]. The system
consists of several stages, typically executed in sequence. The first stage, Timetabling,
involves determining journeys start and end times at all bus stops. Next, Vehicle
Scheduling focuses on assigning bus vehicles to specific bus tours. Following this, Driver
Scheduling is responsible for defining daily shifts that ensure that all bus tours are covered.
Finally, Driver Rostering assigns these shifts to bus drivers. These stages are depicted
in Figure 1.1. The interested reader can find more information in the survey by Oscar
Ibarra-Rojas et al. [IRDGM15] or in Avishai Ceder’s book [Ced16].
The BDSP is a problem with clear practical relevance, and it has been studied since the
early 1960’s [Wre04, WR95]. The constraints of the BDSP depend on the country’s legal
regulation. In this thesis, we focus on a challenging variant of this problem based on
the Austrian collective agreement for employees in private omnibus providers [Wir19].
In this variant, recently introduced by Lucas Kletzander and Nysret Musliu [KM20],
the objective function considers the company’s cost and the overall well-being of the
employees. Here, the collective agreement has stringent rules requiring the drivers to
take frequent breaks, with the option to split them into several parts. This translates to
complex constraints rarely studied in the literature and prevents us from directly using
algorithms developed for other variants of the BDSP. The practical relevance and the
difficulty of the constraints make the problem challenging and interesting.
Regarding exact methods, the BDSP is often modelled as a Set Partitioning Problem,
and Column Generation is used [SW88, LH16, PLP08, KMVH21]. However, due to
the need to solve very large real-world problems in a reasonable time, several heuristic
methods have been studied for the BDSP: some examples are Greedy [MT86], Tabu
Search [SK01a, KMM22], Simulated Annealing [KM20], GRASP [DLFM11], CMSA

1

1. Introduction

Vehicle Scheduling

Driver Scheduling

Timetabling

Driver Rostering

Vehicle Schedules

Driver Rosters

- Collective
Agreements

- Regulations

Driver Schedules
(shifts)

Start and End times

Figure 1.1: The Driver Scheduling Problem is one of the stages of the Transportation
Planning System [IRDGM15]. Here, we show a simplified version.

[RKB+23], and Genetic Algorithm [LK03, LPP01]. Note that, in real life, a better
solution would be beneficial for both employees and the company, since the objective
function considers the well-being of the drivers. This also contributes to a more pleasant
work environment that might lead to lower employee turnover and fewer sick days.

In this work, we propose new metaheuristic and hybrid algorithms for solving the BDSP,
and we investigated their strengths and weaknesses. We evaluate our methods on a
publicly available set of real-world-like instances and systematically analysed several
moves, neighbourhoods, solvers, and variants. The experiments showed that our methods
provide the best metaheuristics for many of the larger instances, improving several of the
best-known results in the literature. Moreover, they can scale well to even larger instances
recently introduced. Finally, with Instance Space Analysis, we gained insights into our
methods’ strengths and weaknesses and expanded our set of benchmark instances.

We now present the research questions that guide our investigation.

1.1 Research Goals

This section describes the research goals of my PhD programme and summarise the work
done in the thesis.

2

1.1. Research Goals

1.1.1 Research Goal 1: Classical Metaheuristics for the BDSP

The first research question we address is:

RQ1

How do classical metaheuristics perform on the Austrian formulation of the BDSP?
What are the most efficient components of these algorithms?

To answer this question, we first analysed and investigated different methods. For the
BDSP, several metaheuristics and exact methods exist in the literature. Branch and
Price [KMVH21] provides excellent results for instances with up to 60 bus tours. However,
it fails to find good solutions for larger instances. In this case, Simulated Annealing and
Hill Climbing provided the best-known solutions in the literature [KM20]. To improve
them, we investigated methods based on Iterated Local Search and Tabu Search, which
take into account several moves, parameters and perturbations. We studied and analysed
the behaviour of heuristic methods based on these moves. We examined the impact of
different solution components on the performance of the algorithms. We observed that
while Simulated Annealing performs well with small instances, Tabu Search achieves the
best results for larger instances, outperforming previous state-of-the-art methods.

1.1.2 Research Goal 2: Large Neighbourhood Search for the BDSP

The second research question we address is:

RQ2

How can we improve our methods by combining exact and heuristic approaches?

We combined the flexibility of heuristics with the completeness of exact methods for
small subproblems. We use a hybrid method called Large Neighbourhood Search. This
method iteratively modifies solutions using different destroy and repair operators. The
main idea is to destroy part of a solution to obtain a subproblem that is easy to solve
optimally or at least close to optimality. A chosen destroy operator selects and destroys
a part of the solution. Then, a repair operator improves the incomplete solution. That is,
it returns a feasible solution built from the destroyed one. The new solution is accepted
if it is better than the previous one.

We also tested adaptivity, where the algorithm iteratively learns the best destroy operator
to use and adapts the probability distribution accordingly.

Regarding the destroy operator, we consider three different operators that remove shifts,
either uniformly, based on the cost of their shifts or associated with whole bus tours.

In the repairer phase, there are two good candidates from the literature: Branch and Price
(B&P) and Column Generation (CG). Although Branch and Price (B&P) [KMVH21]
returns the optimal solution for small instances, we observe that Column Generation

3

1. Introduction

reaches very good solutions (with an optimality gap of around 1%) much faster. Therefore,
we compare the performance of the sole Column Generation versus Branch and Price.
This results in several Large Neighbourhood Search variants that we investigated.

We then propose a novel tight integration of Large Neighbourhood Search (LNS) and
Column Generation (CG), where columns from each subproblem are aggregated and
reused to improve the search significantly. Our approach constitutes the new state of the
art, outperforming previous results across all sizes of instances. While this evaluation
is specific to this version of the problem, the ideas used in B&P and LNS and their
integration are generally applicable to complex personnel scheduling problems.

1.1.3 Research Goal 3: Instance Space Analysis for the BDSP

The third research question we address is:

RQ3

Which problem features best characterise the BDSP and its difficulty? How can
we generate instances that are more diverse and representative?

Instance Space Analysis (ISA) [SMMn23] is a methodology designed to (a) support
objective testing of algorithms and (b) assess the diversity of test instances.

We defined a set of instance features that capture the mathematical and statistical
properties of the problem instance. For example, we investigated features related to the
instance size, the distribution of the bus legs, or the flow between the bus stops.

Interestingly, features that appear in the literature on other problems can be translated
into BDSP features. For example, we considered the proportion of bus legs whose length
is larger than the average, like Kelvin Liu et al. [LSMC20] had done for the Bin Packing
Problem.

We used the ISA to scrutinise the instance space of the BDSP to gain more insight
into instances and algorithm performances. Given a set of instances and corresponding
features, ISA highlights the regions of the instance space that are not covered by the
available instances. To include these regions, we generated a number of new instances. To
do so, we developed an instance generator that builds new instances using 44 parameters
such as the number of bus stops and the average bus tour length. This allowed us to
expand the previous set of instances from [KM20], which were limited and not diverse
enough. we propose a set of features of the test instances to characterise their similarities
and differences. We compared the two main state-of-the-art algorithms for the BDSP
on real-world-like and random instances. We finally scrutinised the instance space and
pointed out the regions that are not yet sufficiently covered. Although LNS was always
performing better than Construct, Merge, Solve & Adapt (CMSA) on our initial set of
instances, we could identify new types of instances where the opposite is true.

4

1.2. Summary of Contributions

1.2 Summary of Contributions

We summarise the main contributions of this thesis:

• To efficiently solve real-world-like instances of the BDSP, we developed metaheuristic
methods based on Tabu Search and Iterated Local Search. We analysed the impact
of the parameters and components of those algorithms.

• We developed a novel hybrid method based on the Large Neighbourhood Search
framework that combines the speed of heuristics with the quality of Branch and
Price. The method achieves better results than the other methods in the literature.

• We propose a novel tight integration of Large Neighbourhood Search and Column
Generation, where we store and reuse the columns from each subproblem to improve
the search significantly.

• We developed an instance generator to generate new, larger, and diverse instances
and make them publicly available.

• We propose a set of features of the test instances to characterise their similarities
and differences.

• Using those features, we used Instance Space Analysis to gain insights into: (a)
how algorithm performance is affected by instance properties, (b) the strengths
and weaknesses of CMSA and LNS for different types of instances.

1.3 Publications

The results presented in this thesis have been included in the following publications:

• Tommaso Mannelli Mazzoli, Lucas Kletzander, Nysret Musliu, Kate Smith-Miles.
Instance Space Analysis for the Bus Driver Scheduling, International
Conference on the Practice and Theory of Automated Timetabling (PATAT), 2024
[MMKMSM24]

• Tommaso Mannelli Mazzoli, Lucas Kletzander, Nysret Musliu, Pascal Van Henten-
rick. Investigating Large Neighbourhood Search for Bus Driver Schedul-
ing, International Conference on Automated Planning and Scheduling (ICAPS)
2024 [MKHM24]

• Lucas Kletzander, Tommaso Mannelli Mazzoli, Nysret Musliu. Metaheuristic
Algorithms for the Bus Driver Scheduling Problem with Complex Break
Constraints, The Genetic and Evolutionary Computation Conference (GECCO)
2022 [KMM22]

5

1. Introduction

Preprint

• Lucas Kletzander, Tommaso Mannelli Mazzoli, Nysret Musliu, Pascal Van Henten-
rick. Integrating Column Generation and Large Neighborhood Search
for Bus Driver Scheduling with Complex Break Constraints, https:
//arxiv.org/abs/2505.02485

1.4 Organisation
This thesis is organised as follows.

Section 2.3 provides the preliminary notions to understand the rest of the work.

Chapter 3 introduces the BDSP using the rules of the Austrian collective agreement
for private omnibus providers and, in Chapter 4, we reviewed the literature on related
problems.

Chapter 5 proposes metaheuristic methods based on Tabu Search and Iterated Local
Search to approach the BDSP. We also evaluate the impact of the two methods on solution
components and provide a new set of larger realistic benchmark instances that are publicly
available. Chapter 6 introduces a hybrid method based on a Large Neighbourhood Search
framework, where the repair operator is Column Generation. Here, we dropped the aim of
optimally solving the subinstance with Branch and Price, and instead only used Column
Generation on the root node to quickly get very good solutions to the subinstance. We
expanded it even further, considering the reuse of the generated columns and adding a
second thread that runs a global solver in the background to solve the master problem.

Chapter 7 uses Instance Space Analysis to show the weaknesses and strengths of the
two solution methods. First, we extended an instance generator to generate varied
real-world-like and random instances. This allows us to expand the previous set of
instances from the literature. We then present a set of features that describe the hardness
of the instances. The features represent the structure of the instance, such as the average
break length for each vehicle or the distribution of bus tours in the city. Even if Large
Neighbourhood Search outperforms Construct, Merge, Solve & Adapt in real-world-like
instances, it does not perform as well for some random ones.

Finally, in Chapter 8, we gave concluding remarks and discussed future work.

6

https://arxiv.org/abs/2505.02485
https://arxiv.org/abs/2505.02485

CHAPTER 2
Preliminaries

About this chapter

We compress here the mathematical concepts and methodologies required to follow
the thesis.

2.1 Notations, Symbols, and Definitions

Given a finite set A, let 2A be the power set of A (the subsets of A): 2A = {X | X ⊆ A}.
The cardinality (number of elements) of a set A is denoted by |A|.

We use the term instance consistently throughout this thesis. The following definition is
adapted from Combinatorial Optimization by Christos H. Papadimitriou and Kenneth
Steiglitz [PS98].

Definition 2.1 (Instance). An instance of an optimisation problem (or, briefly,
instance) is a pair (X , z) where X is a finite set (named “the solution space”) and
z : X → R is the objective function that we aim to minimise.

The problem is to find the global optimum.

Definition 2.2 (Global optimum). Given an instance (X , z) of an optimisation
problem, a solution S∗ ∈ X is called a global optimum if for all S ∈ X it holds that
z(S∗) ≤ z(solution).

7

2. Preliminaries

Remark

Often X and z are given “implicitly” in terms of two algorithms AX and Az.
The algorithm AX takes as input an object S, a set P of parameters and decides
whether S is an element of X . The algorithm Az, instead, given a solutiona

S ∈ X and another set of parameters Q, returns the value of z(S). In most cases
(including ours), we assume that AX and Az are polynomial-time algorithms, but
there are exceptions [PS98, Problem 17(a) at pag 379].

aAs it is very usual in the field of Combinatorial Optimisation, we use the word solutions to
refer to feasible points (even though they are not global optima)

The main idea of the neighbourhood of a solution S is that it is a set of solutions close
to S. Needless to say, the definition of closeness depends on the problem.

Definition 2.3 (Neighbourhood). Given an instance (X , z) of an optimisation
problem, a neighbourhood is a function N : X → 2X that maps a solution into a
set of solutions. If S ∈ X , N(S) is called a neighbourhood of S.

Example of a neighbourhood

Let X = {0, 1}n be the set of binary vectors of length n. Let flip : N×X → X be
the function flip(i, S) that flips the i-th component of the solution S:

flip(i, S) = (S1, S2, . . . , Si−1, S̄i , Si+1, . . . Sn).

flipped element in position i

This induces a neighbourhood Nflip(s) = {flip(i, s) | i ∈ {1, 2, . . . , n}}. For example,
for n = 3 and s = (0, 1, 0), we have

Nflip
(︂
(0, 1, 0)

)︂
=
{︂

(1 , 1, 0), (0, 0 , 0), (0, 1, 1)
}︂

.

The concept of a neighbourhood naturally leads to the definition of local optimum.

Definition 2.4 (Local Optimum). Given an instance (X , z) of an optimisation
problem and a neighbourhood N , a feasible solution Ŝ ∈ X is a local optimum with
respect to N if z(Ŝ) ≤ z(S) for all S ∈ N(Ŝ).

It is important to note that, in general, there is no guarantee of the quality of the local
optimum obtained.

8

2.2. Instance Space Analysis

2.2 Instance Space Analysis

Instance Space Analysis (ISA) is a methodology proposed by Kate Smith-Miles et al. in
2014 [SMBWL14] that extends the algorithm selection problem framework of John R.
Rice. [Ric76]. The current form is described in the article from 2023 by Kate Smith-Miles
and Mario Andrés Muñoz [SMMn23].

In Instance Space Analysis (ISA), instances are represented as vectors of features. The
instances are then projected onto the 2D plane to separate hard and easy instances.
Figure 2.1 illustrates the Instance Space Analysis framework.

x ∈ P
Problem

space

x ∈ I
Problem
subset

f(i) ∈ F
Feature
space

z(i) ∈ R2

Instance
space

Footprints
in instance

space

Algorithm
selection

α ∈ A
Algorithm

space

y(α, x) ∈ Y
Performance

space

Select or generate
a subset I ⊂ P

Construct feature
vector f

Measure y(α, x) by
applying α to x

Generate new
instances

Define algorithm
footprints φ(y(α, I))

α∗ = arg max S(z(i), y(α, x))

Infer y(α, x) for
any x ∈ P

α∗ = arg max S(f(i), y(α, x))
Dimension
reduction

g(f(i), y(α, x))

Figure 2.1: ISA framework [SMMn23]

The problem space P contains all the theoretically possible instances of an optimisation
problem. However, in practice we only consider a (smaller) subset of instances I ⊂ P , for
which we have experimental results.

The first component of the meta-data are some chosen features, used to characterise the
mathematical and statistical properties of the instances that (1) describe the similarities
and differences between instances in (2) have correlation with the performance of one or

9

2. Preliminaries

more algorithms. For a given instance x ∈ I, we calculate the feature vector f(i), which
represents an instance in the feature space, F .

The second component is the performance measure. For each algorithm α ∈ A (the
algorithm space) and each instance x ∈ I, the performance measure y(α, x) measures the
“goodness” of the algorithm on that specific instance. This could be, for example, the
objective function value obtained for a fixed computational budget. The term y(α, x) is
an element of a vector that describes the performance space, Y.

Together, the features and performance measures for all the instances in I, and all
algorithms in A constitute the meta-data. We represent this meta-data as two matrices
F = [f1, . . . , fn] ∈ Rm×n and Y = [y1, . . . , yn] ∈ Ra×n , where m is the number of
features, n is the number of problem instances, and a is the number of algorithms. Hence,
the meta-data is the set {F , Y }.

In the original framework proposed by Rice in 1976 [Ric76], a selection mapping S
was learned directly from features and performance. Later, in the expanded framework
introduced by Smith-Miles et al. in 2014 [SMBWL14], and extended by Smith-Miles
and Muñoz in 2023 [SMMn23], instances are projected from the feature space into a
lower-dimensional 2D space using the dimension reduction g (f(x), y(α, x)). It aims to
yield an optimal projection that looks for linear trends in both features and algorithmic
performance across the resultant instance space, to gain interpretable insights. This
allows us to get a visualisation and enables a more detailed evaluation of algorithmic
performance, as well as algorithm selection based on the position of an instance in the
instance space.

In the conceptual framework delineated in the preceding section, the ISA methodology
involves six fundamental steps:

1. Acquiring experimental meta-data for a designated set of instances I ran across a
set of algorithms A. This includes capturing feature values F for all instances and
recording performance metrics Y for all algorithms across all instances.

2. Creating an instance space through a feature selection process applied to the
meta-data {F , Y }, with consideration for a user-defined benchmark for optimal
performance, encompassing its theoretical boundaries.

3. Employing machine learning techniques to generate predictions for automated
algorithm selection.

4. Establishing algorithm footprints and evaluating associated metrics.

5. Analysing the instance space to extract insights and assess the adequacy of the
available meta-data.

6. Generating supplementary meta-data as needed, and iterating from Step 2 onwards,
or concluding the process if no further iterations are warranted.

10

2.3. Experiments

2.3 Experiments

Note on reporting experiments Regarding the experiments, we used the same
methodology discussed in the book of Mike Preuss Experimentation in Evolutionary
Computation [Pre15]. He proposes to organise the presentation of experiments into seven
parts. I report it here for completeness.

1. Research question
Briefly names the matter dealt with, the (possibly very general) objective, preferably
in one sentence. This is used as the report’s “headline” and related to the primary
model.

2. Pre-experimental planning
Summarizes the first—possibly explorative—program runs, leading to Task (3) and
Setup (4). Decisions on employed benchmark problems or performance measures
should be taken according to the data collected in preliminary runs. The report on
pre-experimental planning should also include negative results, e.g., modifications
to an algorithm that did not work or a test problem that turned out to be too hard,
if they provide new insight.

3. Task
Concretizes the question in focus and states scientific claims and derived statistical
hypotheses to test. Note that one scientific claim may require several, sometimes
hundreds, of statistical hypotheses. In case of a purely explorative study, as with
the first test of a new algorithm, statistical tests may not be applicable. Still,
the task should be formulated as precisely as possible. This step is related to the
experimental model.

4. Setup
Specifies problem design and algorithm design, including the investigated algorithm,
the controllable and the fixed parameters, and the chosen performance measuring. It
also includes information about the computational environment (hard- and software
specification, e.g., the packages or libraries used). The information provided in this
part should be sufficient to replicate an experiment.

5. Results/Visualization
Gives raw or produced (filtered) data on the experimental outcome and additionally
provides basic visualizations where meaningful. This is related to the data model.

6. Observations
Describes exceptions from the expected, or unusual patterns noticed, without
subjective assessment or explanation. As an example, it may be worthwhile to
look at parameter interactions. Additional visualizations may help to clarify what
happens.

11

2. Preliminaries

7. Discussion
Decides about the hypotheses specified in 3, and provides necessarily subjective
interpretations of the recorded observations. Also places the results in a wider
context. The leading question here is: What did we learn?

It is important to divide parts 6 and 7, to facilitate different conclusions drawn by others,
based on the same results/observations. Note that all of these parts are already included
in current good experimental reports. However, they are usually not separated but wildly
mixed.

12

CHAPTER 3
The Bus Driver Scheduling

Problem

About this chapter

This chapter introduces the Bus Driver Scheduling Problem with Complex Break
Constraints. This is a challenging scheduling problem originating from the general
Transportation Planning System.

3.1 Background

We can distinguish three goals of the BDSP. The first goal is to define daily shifts that
cover predetermined bus tours and meet the transportation system’s demand.

Fatigue is a major safety concern for drivers, and they must have enough time to rest
and recharge to avoid accidents and maintain a high level of safety for passengers. This
is why the second goal of the BDSP is to respect all the requirements from the collective
agreement and legal regulations. For example, we must ensure that the drivers have
sufficient driving breaks during their shifts.

The third goal of the BDSP is to reduce cost and maximise effectiveness. This means not
only saving money for the bus company, but also minimising the dissatisfaction of the
drivers. For example, breaks that last more than three hours are usually poorly regarded
by the drivers (they are unpaid), and we consider this in the objective function.

This study considers regulations from two documents: The first one is the European
Regulation (EC) No 561/2006 [Com25] that describes rules on driving times, breaks and
rest periods for vehicle drivers of public transport. The second document is the Austrian
Collective Agreement for employees in private omnibus providers [Wir19] using the rules

13

3. The Bus Driver Scheduling Problem

for regional lines up to 50 km. This is particularly strict regarding the break regulations,
which makes the BDSP extremely constrained and challenging to solve.

Although we could rename this variant the Bus Driver Scheduling Problem with Austrian
Regulations (or Bus Driver Scheduling Problem with Complex Constraints), for clarity
we simply refer to it as the Bus Driver Scheduling Problem.

3.2 Problem Description
This section provides a formal specification of the BDSP. This section is partially taken
from previous work in the literature [KM20, Kle22].

3.2.1 Problem Input

The input of the problem consists of three pieces of data:

• Positions and Distance Matrix: A finite set P ⊆ N of positions or bus stops. A
time distance matrix D = (dij) ∈ N|P |×|P | where dij represents the time needed for
a driver to go from position i to j when not actively driving a bus. If no transfer is
possible, then we set dij = +∞1. When i ≠ j, dij is referred to as passive ride time.
In contrast, dii represents the time required to switch tour at the same position,
but is not considered passive ride time.

• Start and End Work: for every position p ∈ P , two integer values startWorkp

and endWorkp respectively represent the time required to start or end a shift at
that position.

• Bus Legs: A set L of Bus Legs, where each leg ℓ ∈ L is defined as a 5-tuple:

ℓ = (tourℓ, startPosℓ, endPosℓ, startℓ, endℓ),

representing the trip of a vehicle between two stops at a certain time:

– tourℓ ∈ N is the ID of the vehicle.
– startPosℓ, endPosℓ ∈ P the starting and the ending positions of the leg.
– startℓ ∈ N is the time at which the vehicle departs from position startPosℓ.
– endℓ ∈ N is the time at which the vehicle arrives to position endPosℓ.

A bus leg ℓ is uniquely defined by its pair of start time startℓ and bus tour tourℓ.
The driving time of a bus leg is lengthℓ = endℓ − startℓ. Bus Legs belonging to the
same Bus Tour t do not overlap, which means that the intervals (startℓ, endℓ) for ℓ
with tourℓ = t are disjoint. Note that all times are expressed in minutes, and time
the horizon spans 24 hours.

1I apologise to any mathematician reading this. In fact, in such cases, we set dij = 999 999 = 106 − 1.

14

3.2. Problem Description

Table 3.1 shows a small example of a set of six legs. The first vehicle starts at time
360 (6:00 am) at position 0 and travels between positions 1 and 2 with waiting times in
between. Finally, it returns to position 0.

Table 3.1: A toy example with two bus tours from [KMM22]

tourℓ startPosℓ endPosℓ startℓ endℓ

1 0 1 360 395
1 1 2 410 455
1 2 1 460 502
1 1 0 508 540
2 0 3 360 400
2 3 0 415 500

We can think of the set of bus legs L as a totally ordered set (Lemma 1).

Lemma 1. Let ⪯ be the relation on L defined as follows: for any ℓ1, ℓ2 ∈ L, write
ℓ1 ⪯ ℓ2 if either

• startℓ1 < startℓ2, or

• startℓ1 = startℓ2 and tourℓ1 ≤ tourℓ2

Then ⪯ is an order relation, and (L,⪯) is a totally ordered set.

Proof.

• Reflexivity: For each ℓ ∈ L we have startℓ = startℓ and tourℓ = tourℓ. So ℓ ⪯ ℓ.

• Antisymmetry Let ℓ1, ℓ2 ∈ L be such that ℓ1 ⪯ ℓ2 and ℓ2 ⪯ ℓ1. This implies that
startℓ1 = startℓ2 , tourℓ1 ≤ tourℓ2 , and tourℓ2 ≤ tourℓ1 . So ℓ1 = ℓ2.

• Transitivity Let ℓ1, ℓ2, ℓ3 ∈ L be such that ℓ1 ⪯ ℓ2, and ℓ2 ⪯ ℓ3. Then there are four
cases:

1. startℓ1 < startℓ2 < startℓ3 . Then startℓ1 < startℓ3 and therefore ℓ1 ⪯ ℓ3.
2. startℓ1 = startℓ2 < startℓ3 so ℓ1 ⪯ ℓ3.
3. startℓ1 < startℓ2 = startℓ3 so ℓ1 ⪯ ℓ3.
4. startℓ1 = startℓ2 = startℓ3 and tourℓ1 ≤ tourℓ2 ≤ tourℓ3 . This implies ℓ1 ⪯ ℓ3.

• Totally ordered: For any ℓ1, ℓ2 ∈ L, exactly one of the following holds:

– startℓ1 < startℓ2 ,

15

3. The Bus Driver Scheduling Problem

– startℓ1 > startℓ2 , or

– startℓ1 = startℓ2 .

In the first two cases, ℓ1 ⪯ ℓ2 or ℓ2 ⪯ ℓ1 follows directly. If startℓ1 = startℓ2 , then
tourℓ1 ≤ tourℓ2 or tourℓ1 ≥ tourℓ2 . Thus, ℓ1 ⪯ ℓ2 or ℓ2 ⪯ ℓ1. Hence, (L,⪯) is
totally ordered.

3.2.2 Solution

A solution S to the BDSP is an assignment of drivers to bus legs. Formally, it is
represented as a set partition of L, denoted as S = {s1, s2, . . . , sn}, where each block
si ∈ S is denoted as a shift. Each shift si represents a subset of bus legs that are assigned
to a single driver. A priori, the number of shifts n is not given. Nevertheless, we can
imagine to set it as large as we need in order to get a feasible solution. The largest
possible partition occurs when each shift contains only one leg, implying that |S| ≤ |L|.
A lower bound for |S| will be discussed in Lemma 2.

Equivalently, it can be useful to think about shifts as the work scheduled to be performed
by a driver in one day [Wre04]. For convenience, we may sometimes refer to the shift s
as the driver s.

Note that, since the set L is totally ordered (Lemma 1), the notion of consecutive legs in
a shift s is well defined. Moreover, a solution is also totally ordered by the order induced
by the bus legs.

A solution is feasible if it satisfies the following criteria:

• For every shift s in the solution, if i, j ∈ s are consecutive bus legs and tour i ̸= tour j

or endPosi ̸= startPosj , then the driver must have enough time to cover the distance
between endPosi, and startPosj . This rule is expressed by the constraint

startj ≥ endi + dendPosi,startPosj .

This implicitly guarantees no overlapping bus legs within a single shift, since dp,q > 0
for every p, q ∈ P .

• Each shift must satisfy all hard constraints depending on the laws specified in the
next sections.

3.2.3 Constraints

This section describes the constraints of our BDSP variant, derived from the Austrian
collective agreement.

16

3.2. Problem Description

≤ 4 h ≥ 30 min

≥ 20 min
≥ 20 min

≥ 15 min ≥ 15 min
≥ 15 min

Figure 3.1: Driving time constraints and required break options [KM20].

Driving time

Ds =
∑︂
i∈s

lengthi =
∑︂
i∈e

(endi − starti) ∀s ∈ S (3.1)

Ds ≤ Dmax = 540 ∀s ∈ S (3.2)

Equation (3.1) defines the driving time Ds of a shift e. Constraints Equation (3.2) set
the upper bound of Ds of nine hours. The driving time is subject to additional rules
regarding driving breaks. The length of a driving break between two consecutive bus legs
i and j is

diff ij = startj − endi.

The driving break can be split in multiple parts, all of which must be completed before
the cumulative driving time without a break reaches 4 h:

• One driving break of at least 30 min.

• Two driving breaks of at least 20 min each.

• Three driving breaks of at least 15 min each.

These driving rules are shown in Figure 3.1. Once we reach all required breaks, a new
block of at most 4 h begins.

Total Time

Ts = endℓ + endWorkℓ − (startf − startWorkf) ∀s ∈ S (3.3)
Ts ≤ Tmax = 840 ∀s ∈ S (3.4)

Equation (3.3) defined the total time of a shift s: it is the span from the start of work until
the end of work, where f is the first leg and ℓ is the last leg in the shift s. Equation (3.4)
sets the upper bound of Ts: no driver can work more than fourteen hours.

17

3. The Bus Driver Scheduling Problem

unpaid rest
2 · 60 2 · 60

3 · 60 3 · 60
paid rest paid rest

centred
30 min break

Figure 3.2: Rest break positioning [KMM22]

Shift Splits.

An important concept is the one of shift splits. We say that the shift e contains a shift
split if there exists a pair of consecutive legs i, j ∈ e such that the break between them
satisfies

startj − endi − rendPosi,startPosj ≥ 180.

Here, rp,q = dp,q denotes the time required for a passive ride between position p and q,
where rp,q = dp,q if p ≠ q and rp,p = 0. Hence, shift splits refer to breaks longer than
three hours. As these breaks are unpaid, they are generally poorly regarded by bus
drivers. This plays a role in designing the objective function.

Denote by splits the number of shift splits in shift s and by splitTimes the total duration
of these shift splits. A shift split resets the driving time (i.e., it counts as a driving break).
A shift contains up to two shift splits.

Rest Break

Let i, j be two consecutive bus legs in a shift. The break between these two legs can be
represented as the time interval [endi, startj], and its length as diff ij = startj − endi. We
denote with diff ′

ij the length of a rest break:

diff ′
ij =

{︄
diff ij − rendPosi,startPosj if 15 ≤ diff ij − rendPosi,startPosj ≤ 180
0 otherwise

If the duration of a (partial) rest break is at least at least 15 min long, the break is
considered unpaid if it does not fall within the first 2 or last 2 hours of the shift. The
maximum amount of unpaid rest breaks (upmaxs) is limited, as shown in Figure 3.2:

• If 30 consecutive minutes of rest break do not intersect the first 3 h or the last 3 h of
the shift, at most 1.5 h of unpaid rest are allowed and therefore we set upmaxs = 75.

• Otherwise, at most 1 h of unpaid rest is allowed, and therefore we set upmaxs = 60.

18

3.2. Problem Description

In formulas,

upmaxs =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

90 if a 30-minute consecutive rest break does not intersect
the first 3 h or the last 3 h of the shift,

60 if there is a 30-minute break centered between the first
3 h and the last 3 h of the shift,

0 otherwise.

Rest breaks beyond this limit are paid. We denote by unpaids the sum of the length of
unpaid rest breaks.

Working time

Ws = Ts − splitTimes −min{unpaids, upmaxs} ∀s ∈ S (3.5)
Ws ≤Wmax = 600 ∀s ∈ S (3.6)

Equation (3.5) defines the working time of a shift s. Equation (3.6) sets the upper bound
of Ws as ten hours.

The working time is subject to additional rules regarding rest breaks. The minimum rest
break depends on the working time:

• Ws < 300: no rest break required.

• 300 ≤Ws ≤ 540: at least one 30-minute break.

• Ws > 540: at least one 45-minute break.

Rest breaks may be split into smaller parts. If a break is split, one part must be at least
30 min in duration, and any additional part must be at least 15 min. The first part of
the break must occur within the first six hours of working time.

19

3. The Bus Driver Scheduling Problem

3.2.4 Objective function

Let S be a solution. The objective function, that we want to minimise, is defined as
follows [KM20, KMVH21]:

z(S) =
∑︂
s∈S

(︁
2W ′

s + Ts + rides + 30changes + 180splits

)︁
, (3.7)

where, for every shift s:

• W ′
s = max{Ws, 390}, where Ws is the working time defined by Equation (3.5). This

objective ensures that drivers are paid for at least 6.5 hours (390 minutes) of work,
even if they work less.

• Ts is the total time of the shift as defined in Equation (3.3).

• rides is the sum of passive ride times between consecutive legs.

• changes is the number of tour changes that is, the number of occurrences of
consecutive bus legs i, j ∈ s with tour i ̸= tourj .

• splits is the number of shift splits.

The coefficients of the linear combination were determined by a previous work [KM20]
based on preferences agreed upon by different stakeholders at Austrian bus companies
and employee scheduling experts.

As argued by Kletzander and Musliu [KM20], practical schedules must not only consider
operating costs, but also the well-being of the drivers. For this reason, change, split and
total time Ts are included in the objective function.

In Figure 3.3 we picture an example of a shift with three bus legs.

start work

ℓ1

rest
ℓ2

rest

passive ride

ℓ3

end work

Working time Ws

? ?

Driving time Ds

Total time Ts

Figure 3.3: Example shift s = {ℓ1, ℓ2, ℓ3} [KMM22]

20

3.2. Problem Description

Upper bound of the objective function

Consider an instance of the BDSP. A trivial solution consists of assigning one shift
to each leg. Let L = {ℓ1, ℓ2, . . . , ℓn} be the set of bus legs and let S be the solution
defined as S = {{ℓ1}, {ℓ2}, . . . , {ℓn}}.

The solution S is feasible and the objective function eq. (3.7) is

z(S) =
∑︂
s∈S

(Ts + 390)

= 780 · |L|+
∑︂
ℓ∈L

(startWork(startPos(ℓ)) + endWork(endPos(ℓ)) + lengthℓ) .

This gives us an upper bound for the optimal solution S∗:

z(S∗) ≤ 780 · |L|+
∑︂
ℓ∈L

(︄
startWork

(︁
startPos(ℓ)

)︁
+ endWork

(︁
endPos(ℓ)

)︁
+ lengthℓ

)︄
.

We are now ready to evaluate a lower bound for the number of shifts of a solution |S|.
This proof is adapted and expanded from previous work [FMT87].

Lemma 2. Consider one instance of the BDSP and define

λ1 :=

⎡⎢⎢⎢ 1
Dmax

∑︂
ℓ∈L

lengthℓ

⎤⎥⎥⎥ and λ2 := max
{︂

a(t1) + a(t2) : |t1 − t2| > Tmax
}︂

,

where a(t) = |{ℓ ∈ L : startℓ ≤ t ≤ endℓ}| is the number of bus legs at time t that are
active, i.e., their correspondent bus tour (vehicle) is currently driving.

Then, for every feasible solution S, it holds that max{λ1, λ2} ≤ |S| .

Proof. let S be a feasible solution. Summing the length of every bus leg in L, we have∑︂
ℓ∈L

lengthℓ =
∑︂
s∈S

Ds ≤ |S| ·Dmax. (3.8)

where Ds and Dmax have been defined in Equation (3.1) and Equation (3.2). This implies
that

|S| ≥

⎡⎢⎢⎢ 1
Dmax

∑︂
ℓ∈L

lengthℓ

⎤⎥⎥⎥ =: λ1.

A second lower bound takes into account the number of active bus legs a(t) at time
t. Clearly, |S| ≥ a(t) for any given time t, because each active leg must have a driver
assigned to it. However, this lower bound can be improved using the fact that for every
time t, no active employee at time t can be active at time t + Tmax or t− Tmax, because
of Equation (3.4). Therefore,

|S| ≥ max
{︂

a(t1) + a(t2) : |t1 − t2| > Tmax
}︂

=: λ2.

21

3. The Bus Driver Scheduling Problem

Hence, |S| ≥ max(λ1, λ2).

Note that two optimal solutions can have different numbers of shifts, as shown by the
following example.

Two optimal solutions with different number of shifts

Consider the instance with

• one position p, and dpp = 10.

• startWorkp = endWorkp = 0.

• two bus legs L = {ℓ1, ℓ2}:

ℓ1 = (1, 100, 200, p, p),
ℓ2 = (1, 800, 900, p, p).

Consider the two solutions S1 = {ℓ1, ℓ2} and S2 = {{ℓ1}, {ℓ2}}. Using Equa-
tion (3.7), we can compute

z(S1) = 800 + 2 · 390 + 180 = 1760
z(S2) = 2 · 390 + |ℓ1|+ 2 · 390 + |ℓ2| = 1560 + 200 = 1760

The two solutions S1 and S2 have the same objective function value, but distinct
number of shifts.

3.3 Benchmark Instances
The original instances cannot be publicly shared, due to agreements with the companies.
That is why an instance generator was developed, able to generate real-world like instances
that follow a similar distribution as the original ones. For our work, we use a set of 50
real-world like instances [KM20]. There 50 instances are divided in 10 sizes, ranging from
around 10 tours to around 100 bus tours. The instance name is realistic_xx_y where
xx is the size of the instance and y is the instance number. All instances are publicly
available: https://cdlab-artis.dbai.tuwien.ac.at/papers/sa-bds/.

In addition to the 50 instances in the literature, we generated 15 new test instances
based on real-world-like distributions that range in size from 148 tours (more than 1300
bus legs) to 250 tours (about 2300 bus legs). Instances of this size occur in practice
when larger (Austrian) cities are considered in their whole, which presents more potential
savings compared to only dealing with subsections of the city.

22

https://cdlab-artis.dbai.tuwien.ac.at/papers/sa-bds/

CHAPTER 4
Related Work

Since this problem strongly depends on local regulations, many variants in the literature
exist from different cities worldwide. We briefly describe some of these variants here to
illustrate the diverse rules, regulations, and constraints one might encounter.

4.1 Variants
Ravenna (1986) In 1986, Silvano Martello and Paolo Toth [MT86] published a paper
about the Bus Driver Scheduling Problem in Ravenna, Italy. Their version aims to
minimise the number of shifts. Here are some of the constraints from their paper:

• Maximum total time Ts ≤ Tmax for every shift s,

• Maximum driving time Ds ≤ Dmax for every shift s,

• The average value of driving times cannot exceed D̄max,

• If a shift s has total time Ts greater than a value T̄ , then it is considered long. At
most λ long shifts are allowed.

• Shifts starting by a time m′ (morning shifts) must finish by a time m′′.

• Meal breaks must be given to drivers at noon and in the evening. The length of
a meal break must be at least m̄. Each driver starting his shift by time n′ and
finishing it after a time n′′ must have a meal break in the period [n′ − m̄, n′′ + m̄].

As for the complexity, in 1987, Silvano Martello, Paolo Toth and Matteo Fischietti
showed [FMT87] that the recognition version1 of their problem is NP-hard. Their

1The recognition version of an optimisation problem is a decision (binary) problem that we can state
as: Given an instance (S, f) and an integer L > 0, is there a feasible solution x∗ ∈ S such that f(x∗) ≤ L?

23

4. Related Work

version only considers Total Time constraints, meaning each shift cannot be longer than
a value Tmax. They proved that the Vertex Colouring Problem reduces to an instance of
the BDSP.

Two years later, the same authors showed [FMT89] that the recognition version of their
BDSP with only driving time constraints is also an NP-hard problem, as the Bin Packing
problem reduces to the BDSP.

Note that we cannot directly use these complexity results since their problem differs from
ours (for instance, we are not interested in minimising the number of shifts).

Leeds (1988) Research about the BDSP in Leeds (UK) has been led since the 1960s
by Anthony Wren, one of the major contributors to the BDSP. In 1988, Barbara Smith,
both independently [Smi88] and in collaboration with Anthony Wren [SW88], published
a paper where they used a Set Covering Problem formulation in a system called IMPACS.
The system and its successor, TRACS II [FPW02, WFK+03] which is known to typically
achieve savings of 1–5% of driver costs[FPW02], were supplied in British cities such as
London, Manchester, Cleveland, Strathclyde, and Portsmouth.

Montreal (1990) HASTUS is a family of products that aim to solve several problems
from the Public Transport that has its roots in Montreal (Quebec, Canada). The main
idea is described in a paper by Blais et al.[BLR90]. The HASTUS system has been
successfully deployed in nearly 40 major cities worldwide.

Tenerife (2023) The work of Guillermo Esquivel-González et al. in 2023 [EGSNL23]
analyses a version of the problem that arose in Tenerife, Spain. Some of the characteristics
of their problem seem fairly similar to ours: the company’s collective agreement requires
that all drivers take a 25-minute break on each shift between the third and fifth hour of
their shift. However, their objective function is entirely different and does not aim to
minimise operational costs. Instead, the goal is to maximise the number of passengers
picked up.

Singapore (2024) In Singapore, there are autonomous buses operated without human
drivers. However, safety drivers still supervise the operations and help in case of
unexpected events [WCM24]. Using this setting, Wang et al. studied [WCM24] the
Robust Safety Driver Scheduling: a model that considers uncertainties such as primary
delays caused by traffic jams. The researchers modified the Set Partitioning Problem,
introducing a term for maximum total delay within uncertainties. To solve this problem,
they developed a Branch-and-price-and-cut algorithm that reached better results than
CPLEX-based Branch and Price.

24

4.2. Exact methods

4.2 Exact methods

Exact algorithms are usually the initial approach for solving an optimisation problem.
As stated by Anthony Wren [Wre04], the BDSP research dates back to the 1960s, but
practical applications of exact methods remained limited until the late 1970’s [WM14,
Sec 4].

For this problem, the main idea of these methods is to formulate the BDSP as either a
Set Partitioning Problem or a Set Covering Problem. Let P ⊆ 2L be the collection of
all possible feasible shifts; its size |P| is a large but finite number. A feasible solution
S is a subset S ⊆ P such that every leg ℓ ∈ L belongs to one and only one shift s ∈ S.
Let cs ≥ 0 be the cost of shift s as described by the sum Equation (3.7). We can then
describe the BDSP as a Set Partitioning Problem.

Set Partitioning Problem

Let L be a set, P ⊆ 2L a set of subsets of L. Let A = (aℓs : ℓ ∈ L, s ∈ P) be the
incident matrix defined, for every ℓ ∈ L and s ∈ P, as follows.

aℓs =
{︄

1 if shift s covers bus leg ℓ,
0 otherwise.

Let c be a cost vector c = (c1, c2, . . . , c|P |) ∈ R|P |. The Set Partitioning Problem is
the minimisation problem

min
∑︂
s∈P

cs xs (4.1a)

s.t.
∑︂
s∈P

aℓs xs = 1 ∀ℓ ∈ L (4.1b)

xs ∈ {0, 1} ∀s ∈ P. (4.1c)

Depending on the BDSP formulation, the master problem can be modelled as a Set
Covering Problem [DS89]. The formulation is the same as the Set Partitioning Problem,
but the equality in Equation (4.1b) is replaced by the inequality ∑︁s∈P aℓs xs ≥ 1.

25

4. Related Work

Set Covering Problem

Let L be a set, P ⊆ 2L, a set of subsets of L. Let A = (aℓs : ℓ ∈ L, s ∈ P) the
incident matrix and a vector c ∈ R|S|. The Set Covering Problem is the minimisation
problem

min
∑︂
s∈P

cs xs (4.2a)

s.t.
∑︂
s∈P

aℓs xs ≥ 1 ∀ℓ ∈ L (4.2b)

xs ∈ {0, 1} ∀s ∈ S. (4.2c)

In theory, if we could enumerate all shifts in P, the optimal solution to the BDSP could
be found by solving the Integer Linear Programming (ILP) model of the Set Partitioning
Problem or Set Covering Problem optimally. However, this is unpracticable in most
cases.

Anthony Wren modelled [SW88] the BDSP as a Set Covering Problem in 1988 and
solved it using Branch and Bound. Other researchers used Column Generation with a
Set Covering Equation (4.2) or Set Partitioning Equation (4.1) master problem and the
Resource Constrained Shortest Path Problem (RCSPP) as subproblem [SW88, DS89,
PLP08, LH16].

4.3 Heuristic and Hybrid methods

Exact algorithms methods are nowadays faster than they have ever been, and in most
cases, they can provide a good solution in a reasonable time. Nevertheless, finding the
optimal solution and proving optimality is impracticable in most real-life cases. Here,
heuristic methods help us.

In the literature, many methods have been used, such as Greedy [MT86, TK13] Exhaus-
tive Search [CSSC13], Tabu Search [LPP01, SK01b], Genetic Algorithms [LPP01, LK03],
or Iterated Assignment heuristics [CdMdA+17].

However, most work focuses mainly on cost, rarely minimising idle time and vehicle
changes [IRDGM15, CdMdA+17]. Break constraints are mostly simple, often including
just one meal break. Complex break scheduling within shifts has been considered by
authors in different contexts [BGM+10, WM14]. There is not much work on multi-
objective bus driver scheduling [LPP01], but multi-objective approaches are used in other
bus operation problems [RMVP13].

Regarding Hybrid Methods: In 2022, Rosati et al. used [RKB+23] the Set Partitioning
Problem for the Solving phase in CMSA: a recently developed matheuristic. Their
implementation of CMSA showed good performances on the large instances, which are,
in general, the most critical ones.

26

4.3. Heuristic and Hybrid methods

In Figure 4.1, we show the ConnectedPapers graph of the paper [KMM22]; to generate
it, we used the free tool available on the net2.

Figure 4.1: Graph from ConnectedPapers based on [KMM22]. Each node is an
academic paper related to the original paper. Papers are arranged according to their
similarity (this is not a citation tree). Node size is the number of citations. Similar
papers have strong connecting lines and cluster together.

2https://www.connectedpapers.com/main/2c402f3d4d30fb3eea188e834ffba7ae3caf9692/
graph?utm_source=share_popup&utm_medium=copy_link&utm_campaign=share_graph

27

https://www.connectedpapers.com/main/2c402f3d4d30fb3eea188e834ffba7ae3caf9692/graph?utm_source=share_popup&utm_medium=copy_link&utm_campaign=share_graph
https://www.connectedpapers.com/main/2c402f3d4d30fb3eea188e834ffba7ae3caf9692/graph?utm_source=share_popup&utm_medium=copy_link&utm_campaign=share_graph

CHAPTER 5
Metaheuristic methods for the

Bus Driver Scheduling Problem

About this chapter

Many exact approaches for the Bus Driver Scheduling Problem have been developed.
In the literature, Branch and Price (B&P) is the best-performing algorithm, opti-
mally solving instances of up to 10 bus tours in few seconds. It is very effective for
instances of up to 40 bus tours. However, for larger instances, B&P struggles to find
good solutions in a reasonable time. This is why we need to rely on metaheuristics
to get high-quality solutions. In this chapter, we propose metaheuristic algorithms
to tackle large instances of the BDSP.

This approach was originally published in a conference paper at GECCO
2022 [KMM22].

5.1 Related work

Because of the need to solve very large real-world problems in a reasonable time,
several heuristic methods have been studied for the Bus Driver Scheduling Problem
(BDSP). Some examples are Greedy [MT86], Tabu Search [SK01a], Simulated Anneal-
ing [KM20], GRASP [DLFM11, PPÁME24], Guided Local Search [SS15], and Genetic
Algorithm [LK03, LPP01].

However, the problem definition of the BDSP is highly dependent on the country’s
labour regulations, and algorithm performance can differ significantly on two different
definitions. As described in Chapter 3, we focus on a variant of the BDSP that follows
the Austrian rules, which are particularly strict regarding rest and driving breaks. This

29

5. Metaheuristics for the BDSP

specific set of rules are not found in the literature. Therefore, we cannot directly use
previous algorithms for our variant.

Regarding the problem introduced in Chapter 3, to the best of our knowledge, the recently
introduced approaches based on Branch and Price (B&P) [KMVH21], and Simulated
Annealing (SA) [KM20] represent the current state of the art for this problem. Although
these approaches achieve very good results, the optimal solutions are not yet known for
large instances.

Figure 5.1: Fred Glover and I at
MIC 2024, Lorient (France)

Heuristics and Metaheuristics The word
heuristic comes from the Ancient Greek word
ϵνρισκϵ́ιν (heuriskein), which means I find, I dis-
cover. For a historical background, the reader can
check the Handbook of Metaheuristics by Michel
Gendreau and Jean-Yves Potvin [GP19, Chap.
2.3.1].

The term metaheuristic was introduced by Fred W.
Glover (Figure 5.1) in 1986 [Glo86, p. 541] in the ar-
ticle Future paths for integer programming and links
to artificial intelligence.1 The Greek prefix meta
means “upper-level methodology”. Metaheuristics
are solution methods that were designed to solve
problems too difficult for exact algorithms. Hence,
metaheuristics provide “acceptable” solutions in
a reasonable time for solving hard and complex
problems in science and engineering. This explains
the significant growth of interest in the metaheuris-
tic domain. Unlike exact optimisation algorithms,
metaheuristics usually guarantee neither the opti-
mality of the obtained solutions nor the convergence
to optimal solutions.

We distinguish two types of metaheuristic methods:

Population-based They can be viewed as an iterative improvement in a population of
solutions. At first, the population is initialised, then a new one is generated, and
finally, these populations are integrated into a new one using a selection procedure.

Single-solution While solving optimisation problems, trajectory metaheuristics improve
a single solution. They can be viewed as “walks” through neighbourhoods or search
trajectories through the problem’s search space.

1Glover uses the word metaheuristic only once in the whole document: «Tabu search may be viewed
as a “meta-heuristic” superimposed on another heuristic».

30

5.2. Tabu Search

5.2 Tabu Search
Tabu Search (TS)2 is a method introduced by Fred W. Glover in his work Future paths
for integer programming and links to artificial intelligence in 1986 [Glo86]:

«Tabu search may be viewed as a “meta-heuristic” superimposed on another
heuristic. The approach undertakes to transcend local optimality by a strategy
of forbidding (or, more broadly, penalizing) certain moves. The purpose of
classing a move forbidden — i.e. “tabu” — is chiefly to prevent cycling. In view
of the mechanism adopted for this purpose,the approach might alternatively
be called “weak inhibition” search, for the moves it holds tabu are generally a
small fraction of those available, and a move loses its tabu status to become
once again accessible after a relatively short time. (In this respect the method
may be contrasted to branch and bound, which likewise forbids certain moves
to prevent cycling, but in a more rigid fashion-a form of “strong inhibition”
search.»

TS is one of the most studied and used metaheuristic algorithms for combinatorial
optimisation. This method can provide good solutions very close to optimality. Therefore,
these successes have made TS popular [GP19]. The main ideas of TS are:

1. To allow to move to solutions worse than the current one, if necessary.

2. To forbid certain moves in order to escape from local optima. This is achieved using
a tabu list, which is an array that stores the performed moves of the algorithm.

The algorithm, based on the original version by Glover [Glo86, Sec. 5], is summarised
in Algorithm 5.1.

Implementation of TS for the BDSP In our implementation, we use two different
move types to generate the neighbourhood of the solution: Shift and Swap. To avoid
confusion between shifts (a solution component) and shift moves, we refer to shifts as
employees in this section. Consider a solution S; we define the following two moves:

• Shift(e1, i, e2): Select two employees e1, e2 ∈ S and a bus leg ℓ ∈ e1 uniformly at
random. Then, remove bus leg ℓ from e1 and assign it to e2. Figure 5.2a shows an
example of a Shift move.

• Swap(e1, i, e2, j): Select two employees e1, e2 ∈ S and two bus legs i ∈ e1 and
j ∈ e2 uniformly at random. Remove the bus leg i from e1 and assign it to e2;
similarly, remove j from e2 and assign it to e1 (see Figure 5.2b).

2The name tabú comes from tàpu, a Polynesian word that Captain James Cook imported in 1777.

31

https://en.wikipedia.org/wiki/Tapu_(Polynesian_culture)

5. Metaheuristics for the BDSP

Algorithm 5.1: Tabu Search
Input: tmax : max run time, S0: initial solution, N : a neighbourhood
Output: S∗

1 Initialise tabu list T ;
2 S∗ ← S0;
3 repeat
4 Identify the best solution y ∈ N(S∗) and the best non-tabu solution

ynt ∈ N(S∗);
5 if Y is not tabu or (Y is tabu and z(Y) ≤ min{z(S∗), z(Ynt}) then
6 S∗ ← Y ;
7 else if Ynt exists then
8 S∗ ← Ynt;
9 end

10 else
11 return S∗ ; // No improving move found
12 end
13 Update tabu list T ;
14 until termination criterion is met;
15 return S∗

e1

e2

i1 i2 i3

j1 j2

Shift
i1 i2

j1 j2 i3

(a) Shift move Shift(e1, i3, e2)

e1

e2

i1 i2 i3

j1 j2 j3

Swap
i1 j2 i3

j1 i2 j3

(b) Swap move Swap(e1, i2, e2, j2)

Figure 5.2: Illustration of (a) Shift Move and (b) Swap Move.

32

5.2. Tabu Search

Note that performing moves can lead to infeasible solutions (e.g., the new bus leg may
overlap with another one). We penalise such solutions by adding a very high penalty
hard-constraints-violation to the objective function, while specifically trying to repair
an infeasible solution would be very challenging due to the complex constraints. For
instance, assume that the employee e works on two bus legs ℓ1, ℓ2 at the same time for k
minutes. Then, we set the violation of hard constraints to 10003.

Given a solution S, we define three neighbourhoods:

• NShift(S) is the set of solutions that can can be reached from S performing a
Shift move.

• NSwap(S) is the set of solutions that can can be reached from S performing a Swap
move.

• NCombination(S) is the union set NCombination(S) := NShift(S) ∪NSwap(S).

Now that we defined the neighbourhoods, we still have to describe how to explore them.

Initial Solution

The initial solutions were generated using a Greedy construction method [KM20]. The
solution is generated by sequentially assigning bus legs to the employee where the lowest
additional cost is incurred, or to a new employee if this would incur an extra cost of at
most 500 compared to the best existing employee assignment.

Search Strategy

To explore the neighbourhood, we use the First Improvement strategy. The idea is to
reach a local optimum quickly, by avoiding the complete exploration of the neighbourhood.
The First Improvement technique starts from a solution S, evaluates the neighbouring
candidate solutions in N(S) and selects the first S′ ∈ N(S) for which z(s′) < z(S), that
is, the first improving neighbour encountered. As soon as it finds it, it moves towards
the new solution and assigns S∗ = s1. The algorithm starts again from S1, exploring the
neighbourhood N(s1). Therefore, after a finite number of iterations, First Improvement
method returns a solution S∗ that cannot be improved in its neighbourhood N(S∗). This
is a local optimum. As said in Lemma 1, the set of bus legs L is totally ordered. The
order relationship can be extended to a order relationship of the employees: let e1, e2 ∈ S
be two employees and ℓ1 and ℓ2 be the first legs assigned to, respectively, e1 and e2. We
say that e1 ⪯ e2 if ℓ1 ⪯ ℓ2; in other words, if e1 starts to work before e2.

In our implementation, First Improvement scans the neighbourhood according to the
order of employees returned from the initial solution, and the order of legs according

3Basically, we change the objective function from z(S) to z(S) + 1000 · h(S), where h(S) is a measure
of the hard-constraint violations of the solution S

33

5. Metaheuristics for the BDSP

to start time, and returns the first improving neighbour. We show First Improvement
in Algorithm 5.2, using z as the objective function in Equation (3.7) including hard
constraint penalisation.

Algorithm 5.2: First Improvement
Input: N : neighbourhood, S0: initial solution
Output: S∗: local optimum

1 S∗ ← S0;
2 for every Y in the neighbourhood N(S∗) do
3 if z(Y) < z(S∗) then
4 S∗ ← Y ;
5 break; // Stop after the first improving move

6 end
7 end
8 return S∗

The tabu list represents the core of Tabu Search. Let S be a solution; we represent the
tabu list as an integer matrix T = (ts,i) ∈ Z|S|×|L|, where L is the set of bus legs. At
the beginning of the run, the matrix is initialised assigning ts,i ← −

⌈︂
α
10
√︁
|L|
⌉︂

for every
s ∈ S, i ∈ L, where α ∈ R≥0 is a parameter that has to be tuned.

Let us assume that we are at iteration k and perform a Shift move. We remove the
bus leg i from employee e1 and assign it to employee e2. Then, the tabu list is updated,
and the iteration in which the move is performed is stored: te1,i = k. To check whether
the move Shift(e1, i, e2) is tabu, we check whether the current iteration k fulfils the
following condition:

k − te2,i <

⌈︃
α

10

√︂
|L|
⌉︃

. (5.1)

This condition checks if a sufficient number of iterations have passed, we do this to avoid
cycling. We use

√︁
|L| as a measure of the size of the problem (the square root is due to

the large number of bus legs). If this condition is satisfied, then the move Shift(e1, i, e2)
is considered tabu.

As a swap can be seen as a composition of two Shift moves, the tabu status can be
applied to those individual Shift moves. Therefore, a swap move is tabu if any of the
two Shift moves is tabu. We allow a move (even a tabu one) if it improves the best
solution so far. As termination criterion, we use the maximum runtime tmax = 3600 s
since it is the one used in the literature.

TS is deterministic, since all the components of the algorithms are themself deterministic.

34

5.3. Iterated Local Search

5.3 Iterated Local Search

Iterated Local Search (ILS) [LMS19], is a non-deterministic metaheuristic algorithm. It
is composed of three parts: LocalSearch, Perturbation, and AcceptanceCriterion. In the
LocalSearch phase, we improve the current solution, reaching a local optimum. In the
Perturbation phase the solution is perturbed using random moves. After that, a Local
Search is performed again. After this process, we obtain two local optima, and we must
choose which one we accept. This is done with the AcceptanceCriterion. The structure of
this algorithm is sketched in Algorithm 5.3.

Algorithm 5.3: Iterated Local Search
Input: tmax : max run time, S0 : initial solution
Output: S∗

1 S∗ ← LocalSearch(S0);
2 while termination criterion is not met do
3 S ← Perturbation(S∗);
4 S′ ← LocalSearch(S);
5 S∗ ← AcceptanceCriterion(S∗, S′);
6 end
7 return S∗;

For the LocalSearch phase, we investigate two techniques, each with different neigh-
bourhoods: FirstImprovement (described in Algorithm 5.2) and TabuSearch (Algo-
rithm 5.1). In this case, TabuSearch is considered as a black-box algorithm that returns
a solution; it terminates when a maximum number of iterations without improvement
kmax ∈ N is reached, this parameter has to be tuned.

In order to escape from a local optimum, we perturb the solution m times (where m is a
parameter that we must tune). Let S be a solution. We can apply three different types
of moves in Perturbation(S).

• Shift: like the neighbourhood Shift previously described.

• Kick: Select three employees e1, e2, e3 ∈ S and two bus legs i ∈ e1, j ∈ e2 uniformly
at random. Then, remove bus leg i from e1 and assign it to e2, and remove bus leg
j from e2 and assign it to e3.

• Crossover: Select two employees e1, e2 ∈ S uniformly at random. Select t in a
uniform way in the real interval [tmin, tmax], where

– tmin is the minimum of the start times of the two employees:

tmin = min
{︃

min
ℓ∈e1
{startℓ} , min

ℓ∈e2
{startℓ}

}︃
.

35

5. Metaheuristics for the BDSP

– tmax is the maximum end time:

tmax = max
{︃

max
ℓ∈e1
{endℓ} , max

ℓ∈e2
{endℓ}

}︃
.

After that, swap every bus leg ℓ between e1 and e2 with startℓ ≥ t.

As acceptance criterion, we apply three possibilities, as described in [LMS19].

• Better(S, S′): Accept the new solution S′ only if it improves the best one so far,
i.e., if z(S′) < z(S).

• RW(S, S′): (Random Walk) Always accept the new solution S′.

• LSMC(S, S′) (Large Step Markov Chain): This criterion comes from Simulated
Annealing (SA). LSMC is somehow an intermediate condition between the first two.
If the new solution S′ is better than S, then accept it. Otherwise, accept it with
probability e

z(S)−z(S′)
τ , where τ ∈ R>0 is a parameter that has to be tuned. If τ is

very large, then the criterion becomes similar to RW. If τ is very small, it becomes
similar to Better criterion.

Finally, regarding the termination criterion, we use a maximum runtime tmax = 3600 s.

5.3.1 Experiment 1: Parameters Tuning

Research question

What is the best set of parameters for the ILS and TS?

Task

The parameters to be tuned are:

• For TS: the parameter α, as described in Equation (5.1). Instead of considering a
generic α

√︁
|L|, with α ∈ R, we use α

10 with α ∈ N to allow an easier tune of the
parameter among a finite set.

• For ILS:

– The number of maximal iterations without improvements kmax.

– The number of times m we apply Perturbation.

– For the AcceptanceCriterion, the parameter τ of LSMC.

36

5.3. Iterated Local Search

Setup

We used a computing cluster that has 10 nodes, each having 24 cores, with an Intel Xeon
E5-2650 v4 2.20 GHz CPU and 252 GB RAM. Each run is executed in a single thread.

To tune the parameters, we used the automated tool Sequential Model-Based Algorithm
Configuration (smac3) [LEF+22], version 1.1.1.

We split the available instances into a training set composed of 26 instances (40% of
the instances) and a test set of 39 instances (60% of the instances). Each trial used the
following options:

• Maximum amount of wallclock-time used for optimisation: 108 h.

• Maximum runtime, after which the target algorithm is cancelled: 1 h.

• As the metric quality we consider the percentage of improvement PI between the
resulting solution S and the initial one S0, i.e. PI (S) = z(S0)−z(S)

z(S0) · 100. This value
is either 0 (if the algorithm cannot find an improvement of the initial solution, or
strictly positive (when it does find the improvement). We do this because smac3
only minimises the target function.

• For ILS we use the following options:

– Neighbourhood: NShift

– LocalSearch: First Improvement.
– AcceptanceCriterion: LSMC.
– Perturbation: Kick.

Results

The tuned values reported by smac3 are described in Table 5.1.

Table 5.1: Parameters tuned

Parameter Range Final value
α ∈ N {1, . . . , 20} 12
m ∈ N {1, . . . , 50} 2
kmax ∈ N {1, . . . , 50} 48
τ ∈ R [100, 10 000] 2408.37

5.3.2 Experiment 2: Impact of Algorithmic components

Research Question

What impact do the algorithm components have on the algorithm?

37

5. Metaheuristics for the BDSP

Task

With these experiments, we want to get insights into the impact of the components of
our heuristics on their performance. In order to do that, we ask the following questions:

• Regarding TS, how much does the choice of the neighbourhood impact on the
results? We compare Tabu Search with NShift and NCombination neighbourhoods.
We use NCombination, but not NSwap, since NSwap does not allow to change the
number of bus legs assigned to an employee on its own.

• Regarding ILS we wonder what the impact of the components Local Search, Pertur-
bation, and AcceptanceCriterion is:

– Fix ILS with LocalSearch=TabuSearch with NShift, and AcceptanceCrite-
rion=LSMC. How does the choice of Perturbation among Kick,Shift,Crossover
affects the performance?

– Fix ILS with LocalSearch=TabuSearch with NShift, and Perturbation=Shift.
How does the choice of AcceptanceCriterion among LSMC, RW, and Better
affect the performance?

– Fix ILS with AcceptanceCriterion=RW, and Perturbation=Shift. How does
the choice of ILS’ LocalSearch between FirstImprovement or TabuSearch
relates with the performance ?

Setup

Regarding the hardware, we use the same setup as in Section 5.3.1. The Tabu Search
Algorithm is deterministic: Repeated runs produce the same result. Instead, Iterated
Local Search is non-deterministic, therefore, we execute 10 independent runs for every
instance.

We used the publicly available set of 50 benchmark instances provided by [KM20]4
together with the new 15 instances described in Section 3.3.

As quality metric, we evaluate the GAP from the known-best-solution in the literature.
For the larger new instances, we set Sbks as the best results from our algorithms.

GAP(S) =
z (S)− z

(︁
Sbks

)︁
z
(︁
Sbks

)︁ · 100. (5.2)

We tested Iterated Local Search with the following options:

• Neighbourhoods: NShift,

• LocalSearch: FirstImprovement and TabuSearch

4https://cdlab-artis.dbai.tuwien.ac.at/papers/sa-bds/

38

https://cdlab-artis.dbai.tuwien.ac.at/papers/sa-bds/

5.3. Iterated Local Search

• Acceptance Criterion: RW, Better, LSMC

• Perturbation: Kick, Shift, Crossover

As determined by smac3, two perturbations are executed at every iteration. We tested the
perturbations by fixing the other components to Tabu Search with NShift and LSMC. We
tested two different Local Search algorithms while RW was used as Acceptance Criterion
and Shift as perturbation: Tabu Search and First Improvement. First Improvement is
simpler, and it only focuses on intensification (no diversification is done). Instead, Tabu
Search is a more complex algorithm and it also has a diversification phase. As figure 5.5c
shows us, , and performs better than First Improvement.

Results/Visualisation

0 10 20 30 40 50 60

instance

0

100000

200000

300000

400000

o
b
je

c
ti

v
e

TS Shift

TS Combination

Figure 5.3: Comparison of Tabu Search neighbourhoods: Objective function values

Observations

Regarding TS, Figure 5.3 shows us the benefits of using the neighbourhood NShift over
Ncombination for instances of size 150, 200, 250 described in Section 3.3. Comparing the
GAP across all the 65 instances, Figure 5.4 confirms the result. Note that the minimum
in the case of NShift neighbourhood is negative because the algorithm could achieve a
new solution for the instance realistic_100_48.

Regarding ILS, Figure 5.5 shows the GAP across the 65 instances for the three components.
In Figure 5.5a we note that the GAP with Crossover is higher, with respect to the
other two. Even if Kick and Shift seem to perform in a similar manner, we can see
that Shift has a lower median and first quartile. Finally, in Figure 5.5c we observe
that the variant with TabuSearch has lower minimum, median, and third quartile than
FirstImprovement.

39

5. Metaheuristics for the BDSP

Shift Combination

0

2

4

6

8
G

A
P
 (

%
)

Figure 5.4: Comparison of Tabu Search neighbourhoods: GAP comparison

Discussions

We chose NShift as the best version of TS for the remaining evaluations. This is because
of its better performance, probably due to the fact that the neighbourhood NCombination

is much larger than NShift.

For ILS, we decide to use Shift as Perturbation. We also see that there is no Ac-
ceptanceCriterion that dominates all the others. However, for 10 instance groups out
of 13, RW performs a bit better than the other two. For LocalSearch, we observed
that FirstImprovement performs worse than TabuSearch, probabily because the
first is simpler and it only focuses on intensification (it does no diversification), while
TabuSearch is a more complex algorithm and it also has a diversification phase. In
summary, we consider the version of Iterated Local Search with Perturbation = Shift,
AcceptanceCriterion = RW, and LocalSearch = TabuSearch.

5.3.3 Experiment 3: Comparison with the literature

Research Question

How do our selected version of Tabu Search and Iterated Local Search compare with the
ones in the literature?

Task

We want to compare the objective function values of our best versions of Tabu Search
and Iterated Local Search with the one of other algorithms in the literature: Simulated
Annealing [KM20], Hill Climbing [KM20], and Branch and Price [KMVH21].

40

5.3. Iterated Local Search

kick shift crossover

0.0

2.5

5.0

7.5

10.0

12.5

G
A

P
 (

%
)

(a) Comparison of Perturbation for ILS. Here we fix LocalSearch=TS and AcceptanceCriterion=LSMC

RW Better LSMC

0

2

4

6

8

G
A

P
 (

%
)

(b) Comparison of AcceptanceCriterion for ILS. Here we fix LocalSearch=TS and Perturba-
tion=Shift

FI TS

0

2

4

6

8

G
A

P
 (

%
)

(c) Comparison of LocalSearch for ILS. Here we fix AcceptanceCriterion=RW and Perturba-
tion=Shift

Figure 5.5: Comparison of the three components of Iterated Local Search

41

5. Metaheuristics for the BDSP

We also performed statistical tests. First, we fixed a significance level of 0.05. Then, as
described by Calvo [CS16], we first performed the Friedman test to detect whether all
algorithms perform the same. Formally, this means having a null hypothesis H0 : the
performance of all the algorithms is the same. This hypothesis is rejected with a p-value
smaller than 2.2 e−16. Finally, we compared multiple algorithms using the Nemenyi
post-hoc test [CS16].

Setup

We use the same setup as in Section 5.3.1. Note that SA and Hill Climbing (HC) were
executed in the same way as in their original publication.

For the statistical tests, we use the R script scmamp5 [CS16].

Results/Visualisation

Table 5.2 shows the results for our final configurations in comparison with the literature.
Each row shows the average results over the five instances of the respective size category.
The best metaheuristic results are presented in bold; the lowest overall results are in
italics.

Since larger instances are of particular interest for metaheuristics, Table 5.3 presents a
detailed comparison for size 100.

Table 5.4 shows the results for the fifteen instances with size 150, 200, and 250. The
results of these sizes do not include Branch and Price, because it was not able to provide
a feasible solution after 1 h of runtime.

Regarding the statistical tests, we graphically show in Figure 5.6 the results on all
instances with a critical difference (CD) plot. For ILS the LocalSearch, AcceptanceCri-
terion, and Perturbation are distinguished. Each considered algorithm is placed on the
horizontal axis according to its average ranking for the instances. The performances of
those algorithm variants below the critical difference threshold (1.8787) are considered
statistically equivalent. In the CD plot, this is remarked by a horizontal bar that joins
different algorithms.

Observation

Table 5.2 shows that Branch and Price achieves the best solutions for most instances
across all size categories. As regards the metaheuristics, Simulated Annealing (SA)
provides very good results for the smaller categories. However, these are precisely the
categories where B&P is most useful, limiting the overall utility of this method. HC
performs best in some mid-sized and the largest category, making it still a good choice.
We note that TS has the best results for sizes 80 and 90 and a very close result for 100.
In comparison, ILS can outperform TS in the smaller categories. However, on the larger

5https://github.com/b0rxa/scmamp/tree/e435f9d48078f93ab49b23a19fdb6ef6e12ea5f9

42

https://github.com/b0rxa/scmamp/tree/e435f9d48078f93ab49b23a19fdb6ef6e12ea5f9

5.3. Iterated Local Search

Ta
bl

e
5.

2:
R

es
ul

ts
fo

r
th

e
be

nc
hm

ar
k

in
st

an
ce

s
gr

ou
pe

d
by

siz
e.

T
he

tim
e

va
lu

es
ar

e
in

se
co

nd
s.

Si
ze

BP
SA

H
C

T
S

IL
S

tim
e

be
st

tim
e

be
st

m
ea

n
tim

e
be

st
m

ea
n

be
st

m
ea

n
st

d
10

7.
2

14
70

9.
2

22
.8

14
71

7.
4

14
73

9.
6

7.
8

14
90

4.
4

14
98

8.
4

15
03

6.
4

14
83

2.
2

14
90

0.
0

65
.2

20
12

01
.4

30
29

4.
8

62
.2

30
86

0.
6

30
97

0.
8

28
.0

30
93

1.
4

31
27

5.
6

31
24

8.
4

30
92

1.
4

31
15

8.
0

13
3.

3
30

36
10

.6
49

84
6.

4
10

8.
8

50
94

7.
4

51
25

7.
8

99
.4

51
54

4.
2

51
91

7.
3

51
48

3.
0

51
32

3.
8

51
60

3.
0

18
1.

3
40

36
05

.8
67

00
0.

4
26

7.
0

69
11

9.
8

69
37

9.
9

15
1.

2
69

53
3.

6
71

33
7.

6
69

94
1.

2
69

84
8.

6
70

23
8.

6
23

7.
6

50
36

74
.4

84
34

1.
0

32
9.

0
87

01
3.

2
87

55
7.

3
29

5.
4

86
71

8.
6

87
26

2.
5

87
85

0.
6

87
87

9.
8

88
13

0.
1

16
4.

9
60

43
73

.2
99

72
7.

0
54

3.
6

10
39

67
.6

10
43

33
.1

43
2.

8
10

37
80

.0
10

4
29

6.
2

10
49

26
.2

10
49

70
.4

10
54

40
.1

22
9.

8
70

64
60

.4
11

85
24

.2
75

1.
4

12
27

53
.6

12
3

22
5.

6
71

8.
6

12
29

12
.8

12
33

03
.8

12
36

32
.2

12
36

01
.8

12
39

76
.2

22
3.

3
80

59
12

.4
13

45
13

.8
11

40
.2

14
04

82
.4

14
09

13
.8

95
9.

4
13

97
65

.2
14

05
08

.0
14

0
48

2.
4

14
10

31
.4

14
12

50
.3

10
5.

1
90

73
90

.4
15

03
70

.8
14

53
.0

15
63

85
.0

15
74

26
.0

15
16

.6
15

62
39

.4
15

68
62

.5
15

6
29

6.
4

15
68

31
.2

15
72

16
.7

22
9.

5
10

0
73

95
.8

17
25

82
.2

14
49

.4
17

35
24

.0
17

45
01

.6
14

83
.2

17
23

27
.8

17
2

90
9.

0
17

29
16

.0
17

33
78

.6
17

35
87

.4
18

7.
0

43

5. Metaheuristics for the BDSP

Ta
bl

e
5.

3:
C

om
pu

ta
tio

na
lr

es
ul

ts
fo

r
in

st
an

ce
s

of
siz

e
10

0.
T

he
tim

e
va

lu
es

ar
e

in
se

co
nd

s.

In
st

an
ce

BP
SA

H
C

T
S

IL
S

tim
e

be
st

tim
e

be
st

m
ea

n
tim

e
be

st
m

ea
n

be
st

m
ea

n
st

d
46

78
14

18
41

86
22

20
17

24
73

17
30

00
.0

15
25

17
08

66
17

1
82

2.
3

17
27

98
17

27
64

17
30

10
.5

14
2.

0
47

72
93

16
52

68
12

19
17

25
89

17
39

72
.5

11
97

17
09

42
17

1
36

5.
7

17
17

63
17

17
10

17
19

07
.9

48
1.

9
48

72
59

17
64

30
13

24
17

34
31

17
44

76
.0

19
11

17
37

22
17

41
18

.3
17

3
04

1
17

38
52

17
40

27
.8

62
.6

49
73

02
17

12
75

10
62

17
60

83
17

68
33

.7
87

1
17

44
90

17
50

60
.7

17
4

79
3

17
59

38
17

61
58

.0
12

2.
0

50
73

11
16

57
52

14
22

17
30

44
17

42
25

.7
19

12
17

16
19

17
2

17
8.

0
17

21
85

17
26

29
17

28
33

.0
12

6.
4

44

5.3. Iterated Local Search

Ta
bl

e
5.

4:
R

es
ul

ts
fo

r
la

rg
er

in
st

an
ce

s.

In
st

an
ce

SA
H

C
T

S
IL

S
be

st
m

ea
n

st
d

be
st

m
ea

n
st

d
be

st
m

ea
n

st
d

15
0_

51
26

10
82

26
17

85
.7

64
4.

1
26

08
93

26
14

27
.0

61
4.

1
26

1
24

6
26

19
92

26
25

16
.6

47
3.

1
15

0_
52

26
79

86
26

91
66

.3
11

39
.5

26
72

65
26

8
21

4.
7

10
75

.2
27

07
37

27
21

38
27

22
12

.3
90

.8
15

0_
53

26
77

24
26

95
33

.0
28

71
.8

26
58

20
26

6
53

7.
3

69
6.

1
26

84
73

26
93

24
26

94
97

.0
12

4.
2

15
0_

54
26

51
32

26
72

43
.3

18
82

.1
26

55
64

26
71

70
.0

15
31

.0
26

4
49

2
26

63
88

26
71

28
.9

46
3.

6
15

0_
55

26
49

22
26

57
99

.3
11

81
.7

26
21

10
26

41
12

.3
19

04
.9

26
3

32
6

26
46

25
26

48
11

.1
18

0.
2

15
0

m
ea

n
26

53
69

.2
26

67
05

.7
15

43
.8

26
43

30
.4

26
5

49
2.

3
11

64
.2

26
56

54
.8

26
68

93
.4

26
72

33
.2

26
6.

4
20

0_
56

35
60

68
35

73
49

.0
17

04
.1

35
51

43
35

63
50

.3
11

35
.9

35
3

41
1

35
40

66
35

44
09

.7
40

0.
1

20
0_

57
35

53
22

35
64

63
.7

14
53

.6
35

55
19

35
68

78
.3

18
60

.7
35

4
05

9
35

52
29

35
56

99
.1

45
7.

6
20

0_
58

34
94

62
35

14
89

.7
18

07
.5

35
08

78
35

12
75

.0
65

3.
6

34
9

10
9

34
91

43
34

98
95

.4
59

0.
2

20
0_

59
35

38
38

35
47

32
.7

77
5.

0
35

07
08

35
18

30
.0

97
5.

5
35

0
23

1
35

03
77

35
06

37
.4

22
0.

0
20

0_
60

35
03

09
35

20
06

.7
15

18
.9

35
04

66
35

11
41

.0
11

33
.8

34
6

92
6

34
76

48
34

79
58

.2
27

0.
0

20
0

m
ea

n
35

29
99

.8
35

44
08

.3
14

51
.8

35
25

42
.8

35
34

94
.9

11
51

.9
35

0
74

7.
2

35
12

92
.6

35
17

20
.0

38
7.

6
25

0_
61

44
41

23
44

44
76

.7
31

7.
2

44
30

61
44

49
35

.3
19

70
.1

44
2

12
6

44
88

81
44

96
33

.8
47

1.
1

25
0_

62
44

76
42

44
86

27
.7

90
5.

3
44

68
34

44
83

76
.3

21
12

.4
44

6
22

1
45

36
75

45
44

76
.1

66
3.

1
25

0_
63

44
65

17
44

73
96

.0
76

8.
7

44
76

02
44

79
24

.0
55

5.
1

44
3

77
7

45
35

89
45

44
45

.0
87

2.
1

25
0_

64
44

71
34

44
85

42
.7

17
53

.1
44

63
14

44
72

39
.3

87
2.

9
44

5
43

6
45

31
33

45
51

26
.3

40
63

.9
25

0_
65

44
07

96
44

35
82

.0
20

00
.8

44
04

96
44

1
52

9.
7

89
7.

7
44

16
69

45
19

45
45

40
53

.0
47

25
.4

25
0

m
ea

n
44

52
42

.4
44

65
25

.0
11

49
.0

44
48

61
.4

44
60

00
.9

12
81

.6
44

3
84

5.
8

45
22

44
.6

45
35

46
.8

21
64

.5

45

5. Metaheuristics for the BDSP

3 4 5 6 7 8 9 10 11

TS_shift

SA

HC

ILS_TS_LSMC_s

ILS_TS_RW_s

ILS_TS_b_s

ILS_TS_LSMC_k

TS_comb

ILS_LS_RW_s

ILS_LS_b_s

ILS_TS_LSMC_c

Figure 5.6: Critical difference plot for all the 65 instances. Groups of algorithms that are
not significantly different (at p = 0.05) are connected.

ones, TS is clearly the better choice. ILS still reaches better averages than Simulated
Annealing in the two largest categories but stays behind HC and TS.

Table 5.3 shows that B&P starts to fall behind, enabling a new best known solution to
be found by TS.

Table 5.4 shows the results for the new larger instances, providing a new benchmark for
metaheuristics to compete on.

Figure 5.6 shows that TS, SA, and HC perform significantly better than the other
algorithms, whith no significant difference among them. However, when this test is done
only for the new larger instances, TS is the leading method with significant difference to
SA and HC, reinforcing the conclusion that TS is the best metaheuristic to use for larger
instances of the BDSP.

Discussion

Overall, these results showed that TS can scale very well to even this very large scale,
outperforming the previous state-of-the-art methods as well as ILS on most instances,
allowing the optimisation of whole city networks in practical applications.

A further advantage is that TS is a deterministic algorithm, eliminating the spread
of results found in the other metaheuristic methods. However, a non-deterministic
implementation would be possible by using randomness for tie-breaking. The previous
algorithms also had a maximum runtime of one hour (on a machine which was around 5%
slower than ours according to a benchmark script). However, they were designed to stop
when no improvement is found for a certain number of iterations. While we currently
did not use such a termination criterion, mainly to compare our different algorithms
configurations, TS could easily be fitted with such a criterion for shorter runtimes.

Even if B&P provides the best solutions for most instances across all size categories, it
has disadvantages when it comes to scaling. First, even though these experiments were
performed on a slightly faster machine than ours (of around 6 % according to benchmark
scripts), much more than one hour of runtime was used for the larger categories. Second,
already for category 100, for some of the instances, only solutions worse than those from

46

5.4. Conclusions

the metaheuristics could be found, indicating that further scaling would be problematic.
Indeed, no competitive results could be obtained in a reasonable runtime when trying
the approach on our new, even larger instances (the new categories progress in much
larger size steps than before). This highlights that metaheuristics are still needed when
dealing with larger instances.

5.4 Conclusions
In this chapter, we analysed two solution methods for the Bus Driver Scheduling Problem
based on Tabu Search and Iterated Local Search. We thoroughly evaluated and compared
different algorithmic components. Our experimental results show that especially Tabu
Search can scale very well to larger instances out of reach for exact methods. In larger
instances of sizes 150, 200 and 250, the state-of-the-art Branch and Price method fails
due to a memory error.

In the next chapter, we will investigate and explore a hybridisation between heuristics
and exact method.

47

CHAPTER 6
Large Neighbourhood Search for

the BDSP

About this chapter

This chapter presents a Large Neighbourhood Search (LNS) approach for solving
the Bus Driver Scheduling Problem (BDSP). We propose several novel destroy
operators and an approach using Column Generation to repair the subproblem.
We analyse the impact of the destroy and repair operators and investigate various
possibilities to select them, including adaptivity. We further propose and evaluate
a deeper integration of B&P and LNS, storing the generated columns from the
LNS subproblems and reusing them for other subproblems, or to find better global
solutions. We analyse the impact of this new strategy, and we observe that it
improves several best-knownsolutions even more than B&P or LNS on their own,
constituting a new state of the art for this problem.

This approach was originally published in a conference paper at ICAPS2024
[MKHM24].

6.1 Large Neighbourhood Search

The Large Neighbourhood Search (LNS) algorithm was introduced by Paul Shaw in
1998 [Sha98]. The algorithm starts from an already feasible solution. The main idea is to
destroy part of a solution in order to obtain a subproblem that is easy to solve optimally
or at least close to optimality. Selecting the part to destroy is done by a set Ω of destroy
operators (also called destroyers), the operator to apply is chosen randomly proportional
to a given weight vector ρ. Solving the subproblem is done by a repair operator, often an
exact method. We accept the new solution S′ if z(S′) < z (Sbsf), where z represents the

49

6. Large Neighbourhood Search for the BDSP

objective function described in Equation (3.7). The term Sbsf is the best-so-far solution.
We show the pseudocode of LNS in Algorithm 6.1.

Algorithm 6.1: Large Neighbourhood Search
Input: k0 (initial destruction size)
Output: Sbsf (best solution found)

1 k ← k0;
2 Construct the initial solution S0 using the Greedy algorithm;
3 Sbsf ← S0;
4 Initialise the weights ρ;
5 while time < tmax do
6 Select destroy operator ω ∈ Ω using ρ;
7 S′ ← r(ω(Sbsf, k));
8 if z(S′) < z(Sbsf) then
9 Sbsf ← S′;

10 end
11 Update the subproblem size k;
12 end
13 return Sbsf;

6.1.1 Destroy Operators

Since our repair mechanism can only produce complete shifts, the aim of the destroyer
algorithms is to select a subset of shift E′ ⊆ E that is removed from the current solution.
The size of the subproblem k = |E′| is given to the destroy operator. We propose three
distinct ways to select E′:

Employees uniform (ωew): Select k employees uniformly at random.

Employees weighted (ωew): Select
⌊︂

k
2

⌋︂
employees using their cost as weight, the others

uniformly at random. This is motivated by the fact that employees with high cost
have a higher potential to benefit from reoptimisation. The split is done since a
combination of high-cost and low-cost shifts can have a better potential to balance
the shifts in the subproblem, e.g., by transferring some legs from the high-cost shift
to an underutilised shift.

Tour remover (ωtr): A tour is uniformly selected and all employees that share at
least one leg of this tour are removed. This process is iterated until at least k
employees are removed. This operator is based on the idea of selecting employees
that have something in common and therefore have a higher potential that useful
recombinations of their shifts are possible, e.g., optimising when and where a bus
is handed over from one driver to the other. Note that this operator might select
more than k employees because it removes all the employees who share a tour.

50

6.1. Large Neighbourhood Search

However, tours are usually not shared by too many employees since this incurs
extra cost, so |E′| does typically not exceed k by much.

6.1.2 Repair Operators

Once a set of removed employees E′ is selected, the repair mechanism needs to solve the
subinstance that is created by using all legs ℓ assigned to any employee e ∈ E′ together
with the immutable data for the whole instance. This subinstance represents a complete
instance of BDSP and can therefore be solved with any solution method of choice.

Since the Branch and Price approach [KMVH21] is the most powerful for small instances
(it can provide an optimal solution for instances with 10 tours within seconds), it is the
best fit for solving these subinstances.

Branch and Price [BJN+98] works by splitting the problem into a master problem and
a subproblem. The goal of the master problem is to select a subset of the shift set P,
such that each bus leg is covered by exactly one shift while minimizing total cost. This
corresponds to the set partitioning problem described in Equations (4.1a) to (4.1c).

minimise
∑︂
s∈P

cs · xs (6.1)

subject to
∑︂
s∈P

asℓ · xs = 1 ∀ℓ ∈ L (6.2)

xs ∈ {0, 1} ∀s ∈ P (6.3)

Here xs is the variable for the selection of shift s. The objective Equation (6.1) minimizes
the total cost, Equation (6.2) states that each bus leg needs to be covered exactly once
(using asℓ ∈ {0, 1} to indicate whether shift s covers leg ℓ), and Equation (6.3) states the
integrality constraint. This constraint is relaxed to 0 ≤ xs ≤ 1 for the relaxed master
problem which is repeatedly solved at each node of the branching tree. Instead of the full
set of possible shifts P , a subset columns is maintained by the algorithm. Once no more
new shifts can be found by the subproblem, the result of the relaxed master problem
provides a local lower bound for the solution of the integer problem.

The subproblem is a Resource Constrained Shortest Path Problem (RCSPP) [ID05]
where each leg is represented by a node in an acyclic graph, and each possible shift
corresponds to a path in this graph from a source node to a target node. Costs and
constraints are represented by resources that are tracked for each path through the graph
and need to adhere to certain limits. Duals from solving the relaxed master problem (no
integrality constraint) are added for each node, and each resource-feasible path where
the cost of the edges and nodes on the path minus the sum of all duals along the path is
negative (negative reduced cost) have the potential to improve the solution of the master
problem. The complex rules for each shift are modelled in this subproblem, making it
very challenging to solve. Therefore, several optimisations were necessary to solve it
efficiently [KMVH21].

51

6. Large Neighbourhood Search for the BDSP

Master problem and subproblem are repeatedly solved until no more path with negative
reduced cost can be found. This part of the process is called Column Generation and
results in the optimal solution for the relaxed master problem, however this result is
usually fractional. Therefore, branching is done and Column Generation is repeated on a
modified problem where some connections from the graph are removed. This branching
process is repeated until all branches are closed or until timeout.

However, previous work [KMVH21] already shows that, for instances up to 60 tours,
the results are very close to the optimum when solving Column Generation only on the
root node and then solving the master problem with integrality constraint on the set
of columns obtained during Column Generation. These solutions are often much faster,
but achieve a GAP of around 1% while the following branching process only closes this
remaining GAP very slowly.

Therefore, we propose to drop the aim of optimally solving the subinstance with Branch
and Price, and instead only use Column Generation on the root node to get very good
solutions to the subinstance very fast. In the evaluation, we compare using Column
Generation (CG) with using full Branch and Price (BP).

Once the repair mechanism returns a solution consisting of employees E∗ that contain
all bus legs from E′, the new solution for the full problem is provided by (E\E′) ∪ E∗.

6.1.3 Subproblem size

An important parameter for Large Neighbourhood Search is the size of the subproblem.
However, the appropriate size depends on the destroy and repair operators. In the case
of our system, the destroy operators are easy and fast to apply, but the complexity of
Branch and Price increases rapidly with the size. Even when just applying Column
Generation, the size of the RCSPP in the subproblem still leads to considerable increases
in runtime.

Therefore, based on preliminary experiments, the smallest subproblem size in use is
k0 = 5. This size can still be solved in a few seconds, so it is fast enough, but it also leads
to a high number of improvements, so it is large enough to allow meaningful changes of
the solution. In the process of the search this size can be increased if too many iterations
without improvement occur. This indicates that a larger size might be needed to escape
local optima.

We use a maximum size of kmax = 20 since runtime grows rapidly and for larger size too
much time would be spent on each individual subproblem. When running the algorithm,
the size starts with an initial value of k0, and is increased by 1 until reaching kmax = 20
whenever the previous improvement was more than nmax iterations ago. As soon as an
improvement is found, k is set back to the initial value k0.

52

6.1. Large Neighbourhood Search

Algorithm 6.2: Adaptive Large Neighbourhood Search
Input: k0 (initial destruction size)
Output: Sbsf (best solution found)

1 k ← k0;
2 Construct the initial solution S0 using the Greedy algorithm;
3 Sbsf ← S0;
4 Initialise the weights ρ;
5 while time < tmax do
6 Select destroy operator ω ∈ Ω using ρ;
7 S′ ← r(ω(Sbsf, k));
8 if z(S′) < z(Sbsf) then
9 Sbsf ← S′;

10 end
11 Update weights ρ and subproblem size k;
12 end
13 return Sbsf;

6.1.4 Adaptivity

Adaptive Large Neighbourhood Search (ALNS) is an extension of LNS, where the weights
ρ for selecting the operators are adapted dynamically based on their performance [RP06].

Our method takes into account the score and the time required by destroy operator i.
At first, every component of the weight vector ρ is set to 1

|Ω| . The destroy operator is
selected in a random way with weights ρ using the roulette wheel principle:

P (i-th operator is selected) = ρi∑︁|Ω|
j=1 ρj

(6.4)

The selected destroy operator is then applied to the current solution S, which results in
a subproblem that is passed to the repair operator r. We update the weights considering
the number of successes and the total time of its selections. A similar approach was used
in a related crew scheduling domain [CMS19]. At iteration n, we update the weight ρn

i

of the i-th destroy operator using the following equation:

ρn+1
i = λρn

i + (1− λ)
∑︁n

j=0 σj
i∑︁n

j=0 τ j
i

(6.5)

where σj
i = 1 if the i-th operator has improved the best-known-solution at iteration j,

otherwise 0. The denominator is a sum of runtimes, so τ j
i represents the time the i-th

operator took for the entire process (destroying + repairing) at iteration j. If operator
i was not selected at iteration j, then σj

i = τ j
i = 0. The real parameter λ ∈ [0, 1]

controls the sensitivity of the weights. A value of λ close to 0 implies that the operator
performance during the search has a large influence while a value of 1 keeps the initial

53

6. Large Neighbourhood Search for the BDSP

weights static. As long as the denominator is 0, the value of the fraction is set to 0. In
this case, ρn+1

i = λρn
i .

Algorithm 6.2 presents the pseudocode of Adaptive Large Neighbourhood Search (ALNS).

6.2 Integration of Column Generation and Large
Neighbourhood Search

When applying Large Neighbourhood Search (LNS) on an optimisation problem, by
default the repair operators are used in a black-box fashion: The current subproblem
is fed into the operator, the corresponding solution is used to update the solution to
the overall problem, and it does not matter how it was obtained. Each subproblem is
solved from scratch, and all additional information gained while solving the subproblem
is discarded every time.

However, this might actually be inefficient, as information from solving each subproblem
might be useful for future subproblems, or it might be used beyond individual subproblems
to globally enhance the best solution. In this section, we present two novel integration
techniques for combining LNS with a Column Generation (CG) repair operator that are
generally applicable for this combination of solution methods.

6.2.1 Column Storage

The first integration is dedicated to the reuse of information between subproblems. Recall
that each shift (column) s generated by CG is a subset of the bus legs s ⊆ L. Each time
a subproblem i consisting of legs Li ⊆ L is solved, a large set of columns Si is generated,
and a solution to the subproblem S∗

i ⊆ Si is returned.

By default, the columns are regenerated for each subproblem, however, the same columns
might be generated repeatedly by multiple subproblems. Therefore, for a potential
improvement, a column storage P̂ is introduced, and after solving a subproblem, the
update in Equation (6.6) is performed.

P̂ ← P̂ ∪ select(Si) (6.6)

A subset of the newly generated columns is added to the column storage P̂, where the
selection criteria can be chosen freely, including no storage, or storing all columns.

Now, each time a subproblem i is solved, the set of columns Si can be initialized as seen
in Equation (6.7).

Si ← {s ∈ P̂ | ∀ℓ ∈ s : ℓ ∈ Li} (6.7)

Each column from the storage that only contains legs that are part of the subproblem are
added to the initial set of columns, therefore, these columns do not need to be rediscovered

54

6.2. Integration of Column Generation and Large Neighbourhood Search

again in the current subproblem. Using this column reuse strategy is denoted by adding
+r to the LNS version resulting in the method called lns+r(b).

6.2.2 Global Background Solver

The second improvement adds the global view of B&P into the local view based on
subproblems in LNS. The whole set of columns P̂ can be used in a global master problem.
Since in LNS we do not aim to solve the problem exactly, there is no need to solve
the relaxed master problem, instead the integer problem can be solved to get the best
possible solution for the current set of stored columns.

However, solving increasingly larger integer master problems takes time and memory.
Therefore, we propose to use a second thread for this improvement, using the first thread
entirely for LNS, while the background thread repeatedly solves the master problem
for P̂. At the end of every repairing phase of LNS, the algorithms checks whether the
solution from the second thread is better than the current best:

Sbsf ← argmin
(︁
z(S′), z(Sbsf), z(Sbg)

)︁
.

where Sbg is the solution from the second thread, Sbsf is the best-so-far and S′ is the
solution after the repairing phase, as described in Algorithm 6.2 . If Sbg is better, it
replaces Sbsf, and LNS continues from this improved solution. This is only a mild form
of parallelization that is easily applicable with current multi-core machines, but can be
very beneficial to further improve the joint performance of the methods.

As the background solver repeatedly solves similar problems, and new columns are
frequently added, two more considerations are relevant. First, columns for this solver
are never removed, but only added, allowing a warm start from the previous result in
each solving cycle. Second, the master problem might not be solved to optimality, but
stopped according to a given criterion, since incorporating new columns might be more
beneficial than spending more time on the current cycle. We propose to use a timeout
tbg, but at least solve the root node of the MIP, before ending the current cycle. Adding
the background solver is denoted as +b for the LNS version.

This improvement using the background solver can also be used for Branch and Price
on its own. By default, the integer master problem is solved there whenever Column
Generation on a node is finished, or in case even the first node runs into timeout. However,
as each integer solution is a global upper bound independent from the current position
in the branching tree, this process can be done in the background solver as well on the
set of columns S. We call this version bp+b in the evaluation.

6.2.3 Selection of Columns to Store

A critical parameter for the proposed improvements is the selection of columns to store
via the select function. The easy way is to store all new columns, we refer to this
option as (f) (full set). However, this might use a considerable amount of memory.

55

6. Large Neighbourhood Search for the BDSP

Further, the time to search for useful columns for the current subproblem might counter
the benefit of not having to rediscover them, and the background master problem might
get excessively large.

A very lightweight alternative would be to only select the best subset S∗
i for each

subproblem. We denote this version as (b) (best). The focus on only the best columns
will keep the size of P̂ low, but ideally still preserves very good solutions, while the
selection of different subproblems over time should still provide some diversity.

Table 6.1 summarises the variants of LNS related to this section.

Table 6.1: LNS variants

Name Column Reuse Background Solver select

lns no no -
lns+r(b) yes no best
lns+r(f) yes no full
lns+b(b) no yes best
lns+b(f) no yes full
lns+rb(b) yes yes best
lns+rb(f) yes yes full

6.3 Experiments

6.3.1 Experiment 1: Large Neighbourhood Search

Research Question

What is the best variant of Large Neighbourhood Search?

Pre-experimental planning

All algorithms show similar performance on instances of the same size. Thus, we chose
one instance from each size, skipping the smallest size that can be solved to optimality
with BP in seconds. Therefore, we used 12 instances in this part of the evaluation; each
result is the average of 5 runs.

Task

To select the LNS parameters, we thoroughly analysed the impact of different algorithmic
components on a subset of instances from the benchmark set. We investigate the following
components:

1. The repair mechanism: rbp or rcg

56

6.3. Experiments

2. The initial destruction size k0

3. Max. number of iterations without improvement nmax

4. The destroyer selection

5. The role of adaptivity

Setup

For the experiments in this section, we used an setup with Java (OpenJDK 14.0.1) and
CPLEX 12.10 to solve the master problem. The choice of solver does not impact the
experimental results, as the behaviour of the MIP solver only differs for larger problems,
while the subproblems in LNS are fairly small.

To have a metric quality that does not scale with the size of an instance, we evaluate the
quality of a solution using the relative GAP compared to the best-known solution:

GAP(S) =
z(S)− z

(︁
Sbks

)︁
z
(︁
Sbks

)︁ · 100, (6.8)

where S is the current solution and Sbks is the best-known solution among all methods
evaluated in this chapter.

To investigate the impact of the initial destruction size, we tested sizes k0 ∈ {5, 10, 15, 20}.

Next, we investigate increasing the size k every nmax iterations without improvement by
1, until reaching the upper bound kmax = 20 or finding an improvement.

To investigate the impact of adaptivity, we conducted experiments by changing the
parameter λ in Equation (6.5), considering all three destroy operators. We tested three
different values for λ: 1

3 , 1
2 , and 2

3 .

Observation

For fixed k0 = 10, nmax = 50, and equal selection of all destroyers, we compared rbp
and rcg. Results are shown in Figure 6.1a. The performance of destroy and repair is
rather independent from each other, which enables separate evaluation. Each repair
operation has a maximum budget of 5 min, but is expected to usually terminate much
faster. The performance is very similar for the smaller instances, but rcg is clearly the
better choice for larger instances, showing that the extra time used for repairing in rbp is
not justified. Figures 6.1b and 6.1c show that rbp usually takes longer than rcg. While
the average time in both cases is under 10 s for most instances, rcg shows significantly
lower average values. rbp often reaches the time budget of 5 min, while rcg is mostly
below 2 min, showing a much better worst case behaviour.

Regarding the initial destruction size, there are several options regarding the destroyers,
first we investigated the initial destruction size k0, fixing all other parameters. The size
remained constant, rcg and all destroyers are used, and ρi = 1/3 without adaptivity.

57

6. Large Neighbourhood Search for the BDSP

20 30 40 50 60 70 80 90 100 150 200 250
Instance size

0.0

0.5

1.0

1.5

2.0

2.5
GA

P
(%

)
r

BP
CG

(a) GAP for different repair operators

20 30 40 50 60 70 80 90 100 150 200 250
Instance size

2

4

6

8

10

12

14

16

18

Ti
m

e
[s

]

r
BP
CG

(b) Average CPU-time of different repair operators

20 30 40 50 60 70 80 90 100 150 200 250
Instance size

0

50

100

150

200

250

300

350

Ti
m

e
[s

]

r
BP
CG

(c) Maximum CPU-time of different repair operators

Figure 6.1: Comparison of repair operators

58

6.3. Experiments

20 30 40 50 60 70 80 90 100 150 200 250
Instance size

0.0

0.5

1.0

1.5

2.0

2.5

GA
P

(%
)

k0
5
10
15
20

Figure 6.2: GAP for different values of k0

20 30 40 50 60 70 80 90 100 150 200 250
Instance size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

GA
P

(%
)

TR
EU
EW
EW+TR
EU+TR
ALL

Figure 6.3: GAP for different subsets of destroyers

20 30 40 50 60 70 80 90 100 150 200 250
Instance size

0

10

20

30

40

50

Su
cc

es
s R

at
e

TR
EU
EW
EW+TR
EU+TR
ALL

Figure 6.4: Success rate for different subsets of destroyers

59

6. Large Neighbourhood Search for the BDSP

20 30 40 50 60 70 80 90 100 150 200 250
Instance size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
GA

P
(%

)
nmax

5
10
15
20
30
50

(a) GAP for different values of nmax

20 30 40 50 60 70 80 90 100 150 200 250
Instance size

400

600

800

1000

1200

1400

1600

1800

Ite
ra

tio
ns

nmax

5
10
15
20
30
50

(b) Number of iterations for different values of nmax

Figure 6.5: Comparison for different values of nmax

Figure 6.2 shows the results. While k0 = 20 performs slightly better for smaller instances,
it is outperformed on larger instances. Overall, k0 = 10 seems best for the large instances
which are the main focus of LNS, therefore, we fix k0 = 10.

Regarding the number of iterations without improvement, Figure 6.5a shows no significant
difference among them. We decided to set nmax = 50, since it still allows to increase the
size when needed, but does not increase it very often. We tried starting with different
values for k0, but found similar results, the initial size is more important than the step.

Figure 6.5b shows the impact of nmax on the number of iterations (rcg calls). Larger
values of nmax imply less frequent size changes, so more iterations. Of note is that for
the larger instances, the size barely changes, as improvements are frequently found even
with the initial size until timeout.

Regarding the selection of the destroy operator, we tested all the 7 possible combinations

60

6.3. Experiments

of them. Figure 6.3 shows that ωtr has the biggest impact on the performance. It shows
the best results on its own, with very similar results using it in any other combination,
while all combinations without ωtr show significantly worse performance, with higher
divergence among larger instances.
The advantage of selecting employees that share tours is that the subproblems are more
likely to allow meaningful optimisations. This hypothesis is further backed by the success
rate (percentage of iterations where the current solution could be improved) in Figure 6.4,
which shows that in general for larger instances more improvements in subproblems can
be found, but especially using just ωtr has a higher success rate than any other set of
destroyers.
While only using ωtr is the best choice, we further investigated several non-uniform
weight distributions with high weights for ωtr. Denoting the weights as (ρωeu , ρωew , ρωtr),
we conducted experiments with (5, 5, 90), (10, 10, 80), and (25, 25, 50). The first two
where very similar to ωtr only, while (25, 25, 50) started to get slightly worse.

20 30 40 50 60 70 80 90 100 150 200 250
Instance size

0.0

0.5

1.0

1.5

2.0

GA
P

(%
)

LNS (only TR)
ALNS (= 1/3)
ALNS (= 1/2)
ALNS (= 2/3)

Figure 6.6: GAP for adaptive and static LNS

Figure 6.6 suggests that the adaptivity does not improve the average GAP with respect
to the solely ωtr, and different values of λ do not show significant difference.

Discussion

The best choice for the parameters is ωtr as operator, an initial destruction size of
k0 = 10, and nmax = 50 iterations without improvements.

6.3.2 Experiment 2: Integration of CG and LNS

This part is an integration part of the work of [KMVH21] together with Section 6.1.

Research Question

Can we achieve better results if we have a tighter integration between CG and LNS?

61

6. Large Neighbourhood Search for the BDSP

Task

More specifically, the questions we ask ourselves are

Q1: Do we benefit from storing and reusing the generated columns instead of throwing
them away? For example, do we save time?

Q2: During the storing phase, is it worthwhile to store also non-optimal columns?

Q3: Does using an extra thread to solve the MIP problem in the background improve
the overall performance?

Setup

We evaluate and compare seven distinct variants of the Large Neighbourhood Search
algorithm with different levels of integration with Column Generation, summarized in
Table 6.1.

The +r variants use the stored columns to initialize each subproblem according to
Equation (6.7). The +b options apply a background MIP solver according to Section 6.2.2
on the set of stored columns P̂. For each combination, two different choices for the
selection of columns to store (function select) are evaluated according to Section 6.2.3.
The first option (b) is to store only the best columns S∗

i for each subproblem, the other
option (f) to store the full set Si.

To gain deeper insights into the strengths of the variants, we explore the following factors.

• Number of Iterations: We first examine the number of iterations performed by
the LNS methods.

• Repairing Time: Next, we compare the CPU time required by the three methods.
A key consideration is the trade-off between speed and resource consumption.
Storing columns increases RAM usage but can speed up the evaluations. However,
speed is not the only priority: slower evaluations that achieves greater improvements
can lead to better solutions over time.

• Success Rate: We also measure the success rate, defined as the percentage of
iterations in which the algorithm finds an improvement. For instance, a success rate
of 50% indicates that the algorithm improves the solution in half of its iterations.
While a high success rate is desirable, achieving larger improvements, even if less
frequently, can still lead to superior solutions in the long run.

• Convergence Plots: We analyse the convergence behaviour of each variant by
plotting its improvement over a fixed time budget (in our case, 1 h).
Formally, a trajectory is represented as a sequence of pairs (t, f(A, t, r)), where
f(A, t, r, i) denotes the objective function value of the best solution found by

62

6.3. Experiments

algorithm A within time t on its r-th run for instance i. For a fixed A and r, the
sequence {f(A, t, r, i)}t is non-increasing, as the algorithm’s best solution cannot
deteriorate over time. We evaluate the empirical average over 10 runs:

1
10

10∑︂
r=1

f(A, t, r, i).

Note that, the average of two step functions is again a step function.

0 2 4 6 8 10
Time [s]

10

12

14

16

18

Ob
je

ct
iv

e

f1
f2
average

Figure 6.7: Two step functions and their average.

Observation

Figure 6.8 shows the number of iterations, average repairing time, and success rate for
each of the methods, grouped by size. The general trend based on the size is clear.
Smaller instances allow more iterations, since they are faster. For smaller instances, the
success rate is low, indicating fast convergence, while for larger instances success rate is
high, indicating less time is spent in local optima.

Between different variants of LNS, differences are small, but with several notable patterns.
First, lns and both +b variants show very similar results in all three metrics, which
makes sense since the work in the background thread should not have significant impact
on the main thread.

Next, both lns+r(b) and lns+rb(b) show fewer and slower iterations, while both
lns+r(f) and lns+rb(f) show more and faster iterations. This is interesting since
column reuse (+r) is supposed to speed up solving the subproblems. This only seems to
work when adding the full set of columns (f), while only adding the best columns (b)
actually seems to generate overhead instead of speeding up the search.

Figure 6.9 shows the GAP to the best known solution for the different variants. While
the distinction regarding the metrics was small, the distinction regarding the GAP is very

63

6. Large Neighbourhood Search for the BDSP

10 20 30 40 50 60 70 80 90 100 150 200 250
Instance size

0

2000

4000

6000

8000

10000

12000

14000

#I
te

ra
tio

ns
LNS
LNS+R(B)
LNS+B(B)
LNS+RB(B)
LNS+R(F)
LNS+B(F)
LNS+RB(F)

(a) Number of iterations

10 20 30 40 50 60 70 80 90 100 150 200 250
Instance size

0

2

4

6

8

10

12

Av
er

ag
e

tim
e

us
ed

 [s
]

LNS
LNS+R(B)
LNS+B(B)
LNS+RB(B)
LNS+R(F)
LNS+B(F)
LNS+RB(F)

(b) Average repairing time

10 20 30 40 50 60 70 80 90 100 150 200 250
Instance size

0

10

20

30

40

50

60

Su
cc

es
s r

at
e

LNS
LNS+R(B)
LNS+B(B)
LNS+RB(B)
LNS+R(F)
LNS+B(F)
LNS+RB(F)

(c) Success rate

Figure 6.8: Metrics of different LNS integrations

64

6.3. Experiments

10 20 30 40 50 60 70 80 90 100 150 200 250
Instance size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

GA
P

(%
)

LNS
LNS+R(B)
LNS+B(B)
LNS+RB(B)
LNS+R(F)
LNS+B(F)
LNS+RB(F)

Figure 6.9: GAP for different LNS integrations

0 500 1000 1500 2000 2500 3000 3500
Time [s]

51000

52000

53000

54000

55000

Ob
je

ct
iv

e
Va

lu
e

LNS
LNS+R(B)
LNS+B(B)
LNS+RB(B)
LNS+R(F)
LNS+B(F)
LNS+RB(F)
BP

(a) Realistic_30_12

0 500 1000 1500 2000 2500 3000 3500
Time [s]

100000

102000

104000

106000

108000

110000

Ob
je

ct
iv

e
Va

lu
e

LNS
LNS+R(B)
LNS+B(B)
LNS+RB(B)
LNS+R(F)
LNS+B(F)
LNS+RB(F)
BP

(b) Realistic_60_28

0 500 1000 1500 2000 2500 3000 3500
Time [s]

167500

170000

172500

175000

177500

180000

182500

185000

Ob
je

ct
iv

e
Va

lu
e

LNS
LNS+R(B)
LNS+B(B)
LNS+RB(B)
LNS+R(F)
LNS+B(F)
LNS+RB(F)

(c) Realistic_100_49

0 500 1000 1500 2000 2500 3000 3500
Time [s]

430000

435000

440000

445000

450000

455000

460000

465000

470000

Ob
je

ct
iv

e
Va

lu
e

LNS
LNS+R(B)
LNS+B(B)
LNS+RB(B)
LNS+R(F)
LNS+B(F)
LNS+RB(F)

(d) Realistic_250_64

Figure 6.10: Convergence plots

65

6. Large Neighbourhood Search for the BDSP

clear. lns+b(f) and lns+rb(f) significantly outperform all other methods, which show
similar performance among each other. This indicates that adding the background thread
(+b) with the full set of columns (f) is the key combination to improve performance.

The shape of the graph in Figure 6.9 shows that this improvement is most beneficial for
medium to large, but not very large instances. For small instances, all methods perform
very well, with more notable distinctions starting at size 30. Separation grows larger
up to around size 90, while for larger instances the GAP between methods shrinks, and
methods perform very similar for sizes 200 and 250.

Of note is that for up to size 90, lns+b(f) and lns+rb(f) also show very low standard
deviations, making them more stable than the other methods. lns+b(f) starts to degrade
around size 80, while lns+rb(f) shows further benefits regarding deviations and also
slightly better results than lns+b(f) for sizes from 80 to 150.

10 20 30 40 50 60 70 80 90 100 150 200 250
Instance size

2

4

6

8

10

M
em

or
y

[G
B]

LNS
LNS+R(B)
LNS+B(B)
LNS+RB(B)
LNS+R(F)
LNS+B(F)
LNS+RB(F)

Figure 6.11: Memory usage of different LNS integrations

Figure 6.11 shows the memory use of the different LNS versions. The first conclusion is
that all versions that do not combine the background thread (+b) with full storage (f)
show very similar memory use. The pure storage, even of the full set of columns, is not
significant, since the storage using bit sets in the implementation is very light-weight.
However, there is significantly larger memory usage for lns+b(f) and lns+rb(f),
especially for larger instances, showing that using the background thread with a larger
number of columns is what needs extra memory.

While the quality of the results showed the large impact of the background thread and
only minor improvements for column reuse, in comparison lns+rb(f) uses significantly
less memory than lns+b(f). Upon closer investigation, the number of columns in the
background thread grows much slower in lns+rb(f) than in lns+b(f). For example, in
the instance realistic_100_49, the average number of columns differs by a factor of more
than 3, from 2.0× 106 in lns+b(f) to 6.7 × 105 in lns+rb(f). The suspected reason is
that reusing the columns prevents the subproblems from generating a large number of
suboptimal columns which would clutter the background thread. This is also consistent

66

6.3. Experiments

with the slight performance benefit of lns+b(f) regarding the GAP for sizes 80 to 150.
While lns+b(f) already has the background thread cluttered with too many suboptimal
columns, lns+rb(f) avoids this bottleneck for longer.

In order to analyse the behaviour of the different methods over their runtime, Figure 6.10
shows the convergence plots for some instances of different sizes to highlight different
behaviours. The trajectories of the LNS versions are the average trajectories over 10 runs
to avoid showing outlying behaviour. The first three instances all show the dominance
of lns+b(f) and lns+rb(f) over the other LNS methods. The trajectories of these
methods separate from the others very early in the search, and consistently stay ahead
until the end. Figure 6.10a shows the behaviour of bp for smaller instances. While the
results increase in steps (at the end of some nodes in the branching tree), the overall
result and trajectory are comparable to the best LNS versions. Figure 6.10b shows the
behaviour of bp for mid-sized instances. While it can outperform the LNS versions in the
end, it does not provide a solution for a very long time, leading to a much better any-time
behaviour of LNS. For the larger instances, bp only provides a solution with extra runtime,
or using the background thread (bp+b). Figure 6.10d shows the behaviour of LNS for a
very large instance. Here, the versions perform very similar, and the trajectories flatten
out less, indicating that LNS is still improving regularly without hitting too many local
optima, while the problem solved in the background thread gets larger and therefore
harder to solve.

6.3.3 Experiment 3: Comparison of Different Methods

Research Question

How do our best LNS variants compare with state-of-the-art results from the literature?

Task

For our comparison, we consider bp, all our variants of LNS, as well as other results from
the literature: cmsa [RKB+23], Simulated Annealing [KM20], Hill Climbing [KM20],
and Tabu Search (Chapter 5). Since BP is deterministic, it is executed only once. The
other three algorithms are run independently 10 times.

To add a well-founded view of the results, we perform a statistical analysis. The analysis
is done in two steps: the omnibus test, and post-hoc test. In the omnibus test, we
check whether at least one of the algorithms performs differently than the others. To do
that, following the guidelines of Calvo [CS16], we use the Friedman test with Iman and
Davemport extension. We formulate a Hypothesis H0: for every instance, the average
objective function values are identical on all the algorithms. With a significance level
of α = 0.05, the test rejects H0 with a p-value smaller than 2.2× 10−16. Therefore, we
can conclude that that there is strong statistical evidence that at least one algorithm
performs differently than the rest. Thus, we conduct a post-hoc test to detect differences
by pairs.

67

6. Large Neighbourhood Search for the BDSP

Setup

The setup is the same as in Section 6.3.

For statistical tests, we use the software tool scmamp [scm] ran with R (version 4.2.2).

Results/Visualisation

Table 6.2 shows minimum and average per size, with each row averaging the 5 instances
of this particular size. The best performing method is highlighted in bold.

Table 6.2: Results for different solution methods grouped by size

bp lns lns+rb(f) cmsa

Size Min Avg Min Avg Min Avg
10 14 709.2 14 709.2 14 709.2 14 709.2 14 728.2 14 867.4 14 879.7
20 30 299.4 30 294.6 30 312.3 30 294.6 30 295.9 30 695.8 30 745.9
30 49 846.4 49 867.0 49 966.4 49 841.0 49 851.2 50 731.4 50 817.2
40 67 017.0 67 023.8 67 165.7 66 957.6 66 966.7 68 394.8 68 499.9
50 84 338.8 84 415.4 84 583.7 84 251.4 84 272.2 86 219.0 86 389.2
60 99 754.6 100 006.4 100 246.4 99 673.6 99 704.7 102 596.2 102 822.9
70 118 337.6 118 512.2 118 698.9 117 991.2 118 051.3 120 935.6 121 141.9
80 134 925.8 134 827.6 135 178.8 133 983.4 134 081.6 138 406.8 138 760.3
90 150 292.8 150 282.6 150 721.6 149 340.2 149 494.4 154 692.6 155 078.3

100 168 554.2 166 397.4 166 811.5 165 331.4 165 698.9 171 159.4 171 786.7
150 273 629.2 254 742.2 255 449.1 254 195.8 255 017.6 263 079.2 263 387.7
200 380 518.0 337 479.0 338 226.9 337 221.8 338 161.2 348 608.6 349 017.0
250 520 063.4 426 908.4 427 866.7 426 739.4 427 804.0 438 811.4 439 234.5

10 20 30 40 50 60 70 80 90 100 150 200 250
Instance size

0

1

2

3

4

5

6

7

8

GA
P

(%
)

BP
LNS
LNS+RB(F)
CMSA

Figure 6.12: Results grouped by size.

68

6.3. Experiments

We conduct an all pair-wise comparison with the Shaffer’s static method. The results on
all instances are graphically shown with a Critical Difference (CD) plot in Figure 6.13.
Each considered algorithm is placed on the horizontal axis according to its average
ranking for the instances (lower is better). The performances of those algorithm variants
below the critical difference threshold (0.94) are considered statistically equivalent. In
the CD plot, this is remarked by a horizontal bold bar that joins different algorithms.

2 3 4 5 6 7 8 9 10 11 12

LNS+RB(F)

LNS+B(F)

LNS+R(F)

LNS+B(B)

LNS

BP

LNS+R(B)

LNS+RB(B)

LNS (r_BP)

CMSA

HC

SA

TS

Figure 6.13: Critical Difference plot

Observation

Table 6.2 shows that cmsa outperforms all earlier metaheuristics on this problem, and
was executed on a more powerful machine than ours (AMD Ryzen Threadripper PRO
3975WX processor with 32 cores, with a base clock frequency of 3.5 GHz, 64 GB of RAM).
Figure 6.12 shows the gaps for these methods (average is used for stochastic methods).

According to Figure 6.13 there is no significant difference between lns+rb(f) and
lns+b(f). They both outperform all other algorithms and LNS variants. All variants of
LNS outperform the previous metaheuristic methods with significant difference.

Discussion

The results indicate that bp is the best method to use for small instances, as it can solve
very small instances to optimality in a few seconds, and provides high-quality solutions
with known low gaps to the optimum for up to size 30. bp considerably starts to struggle
for large instances.

While results of bp still outperforms cmsa for instances of size up to 90, starting with
size 40, the integrated method lns+rb(f) already outperforms all other methods, and
consistently provides the best results across all further sizes, making it the new state of
the art for this problem.

Since lns+rb(f) uses the background thread, and therefore more resources both in
terms of computation time and memory, the best method regarding efficiency is lns,
which only needs one thread, and uses very moderate memory consumption. Still, in
a very competitive environment, small improvements like those gained by lns+rb(f)

69

6. Large Neighbourhood Search for the BDSP

translate to large savings over time, and the moderate additional resource consumption
is worth the additional benefit in practice.

6.4 Conclusions
In this chapter, we presented a detailed study of Large Neighbourhood Search for the Bus
Driver Scheduling Problem. We introduced a new destroy operator ωtr that exploits the
structure of the problem, and thoroughly evaluated several design choices for both the
destroy and repair operators, as well as the use of adaptivity. The results scale very well
even to very large instances, and can outperform previous metaheuristic solution methods.
Finally, we proposed a new, tight integration between LNS and Column Generation
(CG), where the best version of the integration lns+rb(f) stores all columns from
each subproblem in LNS, reuses them for future subproblems, and solves the integer
master problem with all columns in a background thread. The evaluation showed that
the background thread helps significantly improve the results of LNS, especially for
mid-to-large-sized instances, while the column reuse is very beneficial in reducing the
memory usage of the background thread. Overall, lns+rb(f) is the new state of the art
for instances of medium-to-large-sized size. While this chapter evaluates the methods on
this complex version of BDSP, both the concepts introduced to solve high-dimensional
Resource Constrained Shortest Path Problems (RCSPPs), and the integration of LNS
and CG are general and can be applied to other scenarios, or to other optimisation
problems.

While the results of this chapter show that LNS outperforms CMSA on the set of 65
instances, this is not always the case. In the next chapter, we will discover how to
generate instances where the opposite is true and what are the weaknesses of our LNS
hybrid technique.

70

CHAPTER 7
Generating New Instances and

Analysing the Instance Space

About this chapter

This chapter describes and applies Instance Space Analysis (ISA) to the BDSP.
The ISA is a methodology that allows us to gain more insight into the weaknesses
and strengths of the algorithms. In addition, we get information about the quality
and diversity of the benchmark instances.

This approach was originally published in a conference paper at
PATAT2024 [MMKMSM24].

In Chapter 6 we showed that LNS seems to outperform CMSA; nevertheless, the rea-
son was still unclear. To investigate the reason, we use ISA to show the weaknesses
and strengths of the two solution methods. Instance Space Analysis [SMMn23] is a
methodology that allows the diversity of a set of test instances to be visually examined,
and insights into the strengths and weaknesses of algorithms, across the mathematically
defined boundaries of the instance space, to be observed. First, we greatly extend an
instance generator to be able to generate varied real-world-like and synthetic instances.
This allows us to expand the previous set of instances from the literature.

We then present a set of features that describe the hardness of the instances. The features
consider the structure of the instance, such as the average break length for each vehicle
or the distribution of bus tours in the city. We observe that even if LNS outperforms
CMSA in real-world-like instances, it does not for some synthetic ones.

Using ISA, each instance is projected into a 2D space based on selected features. We
see clusters of instances in the instance space, and the real-world-like instances near
the centre. The bus tour structure appears to have an impact on the performance of

71

7. ISA for the BDSP

the algorithms. Using this information, we can gain insights into the weaknesses and
strengths of the two algorithms.

This chapter investigates how to (1) generate new diverse instances and (2) objectively
assess how the state-of-the-art algorithms perform on those diverse instances.

In this setting, there is a set of 65 real-world-like instances (named Realistic) and perfor-
mance results for two state-of-the-art algorithms: CMSA [RKB+23] and LNS [MKHM24].
Based on the 65 Realistic instances, LNS appears to outperform CMSA. However, we
must scrutinise the diversity of these test instances and seek to ensure they span a range
of instance characteristics before conclusions can be drawn about the merits of each
algorithm.

7.1 Mathematical preliminaries

We state here some mathematical concepts required to follow the next sections. We start
by defining the well-known Gaussian distribution.

Definition 7.1 (Normal distribution). The normal (or Gaussian) distribution with
mean µ and standard deviation σ is denoted by N (µ, σ), describing a bell-shaped
probability centred in µ (the mean) and with a spread of σ2 (the variance).

Its probability density function is defined as

fN (x) = 1√
2π
· 1

σ
e− 1

2 (x−µ
σ)2

(7.1)

Definition 7.2 (Uniform distribution). Let a, b ∈ R be two real numbers. We denote
the (continuous) uniform distribution on the interval [a, b] by U[a,b]. Its probability
density function is defined as

fU (x) =
{︄ 1

b−a if x ∈ [a, b];
0 otherwise.

(7.2)

7.2 Instance Generator

Initially there were 65 publicly available real-world like instances for the BDSP.

However, we can extend the generator to include different characteristics and, by this,
to add diversity. In this section we aim to describe how we generate new instances. In
order to generate an instance, we need the following steps:

72

7.2. Instance Generator

−4 −2 0 2 4
0

5 · 10−2

0.1

0.15

0.2

x

f N

(a) Normal distribution N (0, 1)

−4 −2 0 2 4

7.6

7.7

7.8

7.9

8
·10−3

x

(b) Normal distribution N (0, 50)

−4 −2 0 2 4
0

0.1

0.2

x

f U

(c) Uniform distribution U[−2,2]

Figure 7.1: Example of distributions

73

7. ISA for the BDSP

1. Generate a set of positions (bus stops).

2. Generate the distances between positions.

3. Generate extra work.

4. Create a demand distribution.

5. Generate bus tours that follow the demand distribution.

6. Divide each bus tour into several bus legs.

Positions

To create the bus stops and depot positions, we generate pairs (x, y) ∈ R2 in the plane.
We generate the two coordinates following the normal distribution N (0, σ) for each axis.

For the instances realistic_xx_y, we generated the positions using standard deviation
σ = 50. This means that for each axis, the Probability Density Function is given by:

f(x) = 1
50
√

2π
· e− x2

10 000 (7.3)

We collect the two sets of generated positions (one for each axis) and create the set of
positions P = {(xi, yi)}nstations

i=1 , where nstations is a parameter. The distance parameters
are summarised in Table 7.1.

Table 7.1: Parameters used for the generation of positions. In the last column, the values
used for realistic instances are stated.

parameter name value
σ sigma 50
nstations sample size 10

Extra work

As described in Chapter 3, for each position p ∈ P , there is an associated amount of
working time for starting/ending a shift at position p. We represent these two parameters
as startWorkp and endWorkp

In the case of realistic instances, we set startWork0 = 15 and endWork0 = 10,
assuming that the depot is at position i = 0. For all other positions p ̸= 0, we have
startWorkp = endWorkp = 0.

74

7.2. Instance Generator

−200 −100 0 100 200
0

2

4

6

8

·10−3

x

f N

(a) Distribution on one axis

−200 −100 0 100 200−200

0

200
0

5

·10−3

x
y

fN

(b) Distribution in the 2-d plane.

Figure 7.2: Normal distribution N (0, 50).

75

7. ISA for the BDSP

15 10 5 0 5 10 15 20

15

10

5

0

5

10

15

std=5

(a) σ = 5

150 100 50 0 50 100 150 200

150

100

50

0

50

100

150

std=50

(b) σ = 50

15000 10000 5000 0 5000 10000 15000 20000

15000

10000

5000

0

5000

10000

15000

std=5000

(c) σ = 5000

Figure 7.3: Samples of 1000 points drawn from the Normal distribution N (0, µ), varying
values of σ. The larger the standard deviation σ is, the more spread the distribution is.

76

7.2. Instance Generator

Distances

We use a symmetrical time distance matrix D = (dij) to model the time it takes for
a driver to travel between two positions i and j [KM20]. This time takes into account
not only the physical distance between i and j, but also factors such as traffic that can
impact travel time.

For each p ∈ P , dpp represents the time it takes to switch vehicles at the same position
and is fixed to be 10 min1.

When i ≠ j, the distance dij is determined based on the probability pavail of a direct
connection between positions i and j. If the two positions have a direct connection, then
we set their distance

dij = 10 + ⌊q · distij⌋ ,

where distij is a term for the geometrical distance and q ∈ U[1,uperturbation] represents a
uniform perturbation. If the two positions do not have a direct connection, then we set
dij = 1× 106, since it is a number big enough to be used as an “infinite” distance.

Geometrical distance We introduce a new option to calculate the distance dist. For
the instances realistic, the distance between two positions i = (xi, yi) and j = (xj , yj)
was defined as

distij := x2
i + y2

j (7.4)

However, we also implement the Euclidean distance:

distE
ij :=

√︂
(xi − xj)2 + (yi − yj)2 (7.5)

and the Manhattan one (L1):

distM
ij = |xi − xj |+ |yi − yj | (7.6)

The parameters used in this calculation are summarised in Table 7.2.

dij =

⎧⎪⎪⎨⎪⎪⎩
10 if i = j;
1× 106 if i ̸= j with probability 1− pavail

10 + ⌊q · distij⌋ if i ̸= j with probability pavail, where q ∈ U[1,distvar]

(7.7)

The parameters used are listed in Table 7.2. In the last column, the values used for
realistic instances are provided. Note that pavail = 0.9 makes it extremely unlikely
to have no direct connections between positions.

1Note that the term distance can be misleading. In fact, dij depends on the distance, but it should
be rather interpreted as travel time.

77

7. ISA for the BDSP

Table 7.2: Parameters used for the generation of distances.

parameter mean value
pavail probability of direct 0.9
uperturbation 1.2
M large distance 99 999

Demand distribution

Our goal is to generate the demand distribution, which means creating a vector that
specifies how many Bus Tours (vehicles) will be needed at different times of the day.

We can imagine to have a peak of bus needed during the morning time (for example, at
7:00). This means that we need to force many vehicles to be active in an interval that
contains 7:00, for example [6:00, 8:00]. Moreover, we also need to know how many buses
are necessary. We can think about this as a relative number (for example, if the average
of needed buses is 1, we might need 1.5 buses at 7:00)

Let us define a peak as a moment of the day with very high demand. We formally model
that, we need to introduce the concept of peak:

Definition 7.3 (peak). A peak u is defined as a 5-tuple:

u = (utime, uheight, uafter, uδ, uσ) ∈ N4 × R, (7.8)

where

• utime ∈ N is the time in which the peak reaches the maximum height

• uheight ∈ N represents the number of active buses needed at the peak

• uafter ∈ N represents the number of buses that need to stop and go back to the
depot after the peak

• uδ ∈ N is the spread of the peak: no bus tours must start before utime − uδ and
after utime + uδ

• uσ ∈ R is the standard deviation of the distribution of the peak (i.e., how large
the peak is).

For each peak, we have to know how many start times we have to generate (uheight) and
how many end times, i.e., how many new buses must depart from the depot and how
many should return to the depot right after the peak (uafter).

To do that, we can used the relative height, with respect to some base.

78

7.2. Instance Generator

Let u be a peak and consider uheight and uafter. We can scale them with respect to some
number k: uheight = ⌊k · αu⌋ and uafter = ⌊k · βu⌋. where k is a number that we have to
find.

For sake of clarity we remove the floor functions. The total number of tours ntours that
we generate is

ntours ≥
∑︂
u∈P

(uheight − uafter) = k
∑︂
u∈P

(αu − βu) . (7.9)

This means that we can set

k = ntours∑︁
u∈P (αu − βu) + β|P |

. (7.10)

For example, imagine we have a peak u with uheight = 1.9. This means that if the “base”
if 1 bus needed, during the peak we need 1.9 buses.

How do we know what the base is? We know that we have ntours possible vehicles
available. Since we want to use all of them, we impose

ntours =
∑︂

u peak
(base · uheight) , (7.11)

this implies that
base = ntours∑︁

u peak
uheight

. (7.12)

Bus tours

For us, a bus tour is a real interval (s, t) ⊂ R, corresponding to one start and one end
time. Later, we will divide each bus tour into several segments (bus legs).

To create the starting and ending times, we need a distribution of active vehicles (i.e.,
vehicles that are working during a certain time window). In our instances, we have three
peaks of active vehicles that correspond to specific times of day.

These three peaks are represented by three specific times:

morning One early in the morning to get to the office/school/university. In our case
morningTime = 420 (7:00)

afternoon One for lunch to get back home in case of part-time jobs/students. In our
case lunchTime = 780 (13:00)

evening One later in the afternoon. In our case eveningTime = 1150 (19:10)

79

7. ISA for the BDSP

We can add two extra peaks (for example, one for the afternoon and another one for
the night). We use the normal distribution for each peak, but we want to focus on the
vehicles inside an interval [ℓ, u] that is why we first generate a set of points that follow
the normal distribution. Then, if a point lies outside the interval [ℓ, u], we replace it with
a random point inside the interval.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

x

#
ac

tiv
e

ve
hi

cl
es

Demand
Starts
Ends

Figure 7.4: Distribution of the starting and ending time. The blue line represents the
demand for vehicles over time, which follows a standard normal distribution N (0, 1).
To ensure that there are enough vehicles active during the period [−2, 2], we shift the
distributions for starting times and ending times by a factor of 2, as indicated by the
dashed red and green curves.

Table 7.3: Parameters for the demand distribution

parameter name value
num_vehicles number of vehicles 10-250
morningTime morning peak 07:00
lunchTime lunch peak 13:00
eveningTime evening peak 19:10

80

7.3. Instance Space Analysis

Bus Legs

It’s important to note that the concept of bus tour does not necessarily correspond to a
specific bus line. We are not considering different bus lines in our analysis. For example,
bus line 22 may have multiple bus tours, each of which starts and ends at the same
positions but at different times.

Assume to have a vehicle represented by the time interval [s, t] (start and end times).
We want to divide this interval into multiple pieces (bus legs).

Each bus leg ℓ is represented by a 5-tuple:

ℓ = (vehicleℓ, startℓ, endℓ, startPosℓ, endPosℓ),

The function generates a sequence of "legs" for a bus route, given a start and end time,
and a vehicle index. Each leg corresponds to a section of the route between two stops.
The function uses parameters such as leg duration, break duration, number of stops, and
regularity of the schedule to generate the legs.

The function starts by reading various configuration parameters, such as the minimum
and maximum leg duration, the maximum period of consecutive legs, the regularity of
the schedule, and the number of stops. It then initializes various variables, such as the
start time of the first leg, the duration of each leg and break, the number of stops per
leg, and the previous station. It then enters a loop that generates legs and breaks for
the bus route. Within the loop, the function randomly generates the duration of each
leg and break, the number of stops for each leg, and the regularity of the schedule. It
then generates a plan, which is a list of tuples, each containing the vehicle index, the
start and end times of the leg, the previous station, and the current station. The loop
continues until the end time is reached.

7.3 Instance Space Analysis

We introduced Instance Space Analysis (ISA) in Section 2.2 is a methodology proposed
by Smith-Miles et al. in 2014 [SMBWL14] that extends the algorithm selection problem
framework of Rice [Ric76]. The current form is described in the article from 2023 by
Kate Smith-Miles and Mario Andrés Muñoz [SMMn23].

7.3.1 Problem Subset I

The original set of 50 instances from Kletzander and Musliu [KM20] was later [KMM22]
extended with 15 new (again real-world-like) instances. The instances are publicly
available2. For these instances, the number of bus tours ranges from 10 bus tours
(about 70 legs) up to 250 (about 2300 bus legs). These instances are build to reproduce
particular properties seen in a specific industrial use-case, however, in other settings

2https://cdlab-artis.dbai.tuwien.ac.at/papers/sa-bds/

81

https://cdlab-artis.dbai.tuwien.ac.at/papers/sa-bds/

7. ISA for the BDSP

involving different locations or rule sets, real-world instances might exhibit very different
properties.

To cover a larger portion of the instance space, we greatly extended the original instance
generator. It can generate instances with a larger number of bus stops and more diverse
distributions of bus legs and tours during the day. The generator uses 44 parameters.

We changed some of this parameters (one at time) and we then generated 219 new diverse
instances. The new instances are divided into 12 distinct classes. A brief description of
the types is given in Table 7.4.

Table 7.4: The 12 instance classes. The third column gives the value for the existing
benchmark instances.

Name Characteristic Standard
breakMax No breaks between two consecutive bus legs [3, 35] min
distanceAvailability The probability that 2 stops are connected is 0.1 0.9
distanceVariation Add uniform U[1,100] distance perturbation U[1,1.2]
legRegularity Probability of reusing the last leg is 0.1 0.9
numStations There are 1000 bus stops 10
morningPeak Morning peak is 5 times the regular demand 1.8
legPeriodMax Max number of break lengths in use per tour is 5 3
shortLeg Every leg length is in the interval [5, 15] min [20, 60] min
gridSpread Bus stops drawn using the distribution N 2(0, 1000) N 2(0, 50)
legMax The maximum leg length is 240 min 60 min
legMin The minimum leg length is 5 min 20 min

Figure 7.5 shows the demand distribution of two instances. In both cases there is a
significant morning peak when both employees and students need numerous buses within
a brief period, followed by a decrease in activity. With the instance generator, we can
create instances like in Figure 7.5b, where the peak in the morning is extremely high.

7.3.2 Algorithm Space A

We ran Instance Space Analysis with two algorithms from the literature.

The first algorithm is a matheuristic algorithm: Construct, Merge, Solve and Adapt
(CMSA) [RKB+23]. The second algorithm is the LNS described in Chapter 6.

7.3.3 Feature Space F

We collect a set of 84 features, described in Table 7.5.

A special feature is the number of relative relief opportunities of an instance, defined as
follow.

82

7.3. Instance Space Analysis

Table 7.5: Set of 84 features used in Meta-Data. With glorious seven we mean the seven
descriptive statistics: Max, Min, Average, Median, Std, First quartile and Third quartile.

Feature Name Description
Size-related: Dimension of the problem (4 features)
Number of Tours Number of distinct bus tours of the problem
Number of Legs Number of distinct bus legs of the problem
Number of Positions Number of bus stops (positions) used
Number of Active vehicles Max number of active vehicles during the day
Geometry: (1 feature)
Average distance Average distance between bus stops
Bus Tours: Glorious seven across all tours for each feature (35 features)
Total Time per tour Total span time for each tour
Number of breaks per tour Number of breaks between consecutive legs
Number of proper breaks per tour Number of breaks of ≥ 15 min for each tour
Number of legs per tour Number of bus legs for each tour
Number of large legs per tour Number of legs with length ≥ 2 h for each tour
Distributions: Glorious seven across all legs for each feature (14 features)
Drive Bus legs lengths
Breaks statistics Length of breaks between consecutive legs
RRO: Max, Min, Avg, Median, Std across all positions (25 features)
Max RRO Max Number of RROs over the time horizon
Min RRO Min Number of RROs over the time horizon
Mean RRO Mean Number of RROs over the time horizon
Median RRO Median Number of RROs over the time horizon
Std RRO Std Number of RROs over the time horizon
Bin Packing Problem [LSMC20]: k is the longest leg length (5 features)
Huge Proportion of legs that have length |ℓ| > k/2

Large Proportion of legs with k/3 < |ℓ| ≤ k/2

Medium Proportion of legs with k/4 < |ℓ| ≤ k/3

Small Proportion of legs with k/10 < |ℓ| ≤ k/4

Tiny Proportion of legs with |ℓ| ≤ k/10

83

7. ISA for the BDSP

0 200 400 600 800 1000 1200
Time [min]

0

20

40

60

80

100

120

140

Nu
m

be
r o

f a
ct

iv
e

ve
hi

cle
s

(a) realistic_250_61

0 200 400 600 800 1000 1200
Time [min]

0

10

20

30

40

50

60

70

80

Nu
m

be
r o

f a
ct

iv
e

ve
hi

cle
s

(b) morningPeak_250_3

Figure 7.5: Demand Distribution of active vehicles.

Definition 7.4 (Relative Relief Opportunity (RRO)). Let p ∈ P be a position
and t ∈ R. We define a relative relief opportunity in p at time t (in minutes)
as the proportion of bus legs that are starting from position p in the time window
[t, t + 60 min):

RRO(p, t) = |{ℓ ∈ L | startPosℓ = p ∧ start ∈ [t, t + 60)}|
|{ℓ ∈ L | startPosℓ = p}|

Note that for each position p ∈ P , we can evaluate maxt RRO(p, t) and, consequently,
maxp∈P maxt RRO(p, t) that tells us what the maximum relief opportunity across the
positions throughout the day is.

RRO plays an important role, since it is correlated to the distribution of bus legs, bus
tours and positions at the same time.

84

7.4. Experiments

7.4 Experiments
Research Question

With this experiment, we mainly want to answer two questions:

1. What are the strengths and weaknesses of CMSA and LNS?

2. Can we find instances were LNS achieves worse results than CMSA?

Task

In Chapter 6, we discover that even the plain version of LNS achieves better results than
the implementation of CMSA. We want to understand the reason why this happens and,
if possible, to find instances there the opposite is true.

Setup

We perform the Instance Space Analysis using the Matlab toolkit MATILDA [SMMN20].
The settings for MATILDA are the default settings, therefore the number of final features
is set to 10, as it is the default parameter. The only exception is the performance threshold
set as 0.0. This means that for us an algorithm a1 is better than a2 on instance i if
y(a1, i) < y(a2, i) where y(a, i) means the average of algorithm a on instance i of the
objective function values over 10 runs.

In summary, we have 284 instances from two distinct sources, 84 features described in
Table 7.5, and two algorithms: CMSA [RKB+23] and LNS [MKHM24].

Regarding the algorithm runs, we set 5 minutes as timeout for both algorithms. All
executions were performed on a cluster with 11 nodes using Ubuntu 22.04.2 LTS. Each
node has two Intel Xeon E5-2650 v4 (max 2.20 GHz, 12 physical cores, no hyperthreading).
For each run, we set a memory limit of 4.267 GB and use one thread.

The implementation is in Python, executed with PyPy 7.3.11. Column Generation is
implemented in Java, using OpenJDK 20, and CPLEX 22.11 for the master problem.

[︄
Z1
Z2

]︄
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2636 −0.7982
−0.1663 −0.6664

0.6380 −0.5291
−0.7371 −1.4743
−0.6819 −0.5257
−0.4333 −0.8723
−0.7684 0.3775
−1.3987 −0.2818
−0.4252 0.4900
−0.6950 0.0500

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

driveMax
driveMean

driveMedian
drive3rdQuartile

maxTotalTimePerTour
minTotalTimePerTour

stdMaxRro
stdMeanRro

stdMedianRro
stdStdRro

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.13)

85

7. ISA for the BDSP

Z1

Z2

Instance Space: Distribution of Instances by Source

legRegularity numStations realistic morningPeak legPeriodMax shortLeg

distanceAvailability gridSpread legMax distanceVariation breakMax legMin boundary

likely boundary

-20 -15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

20

Highcharts.com

Figure 7.6: Bus Driver Scheduling Problem instance space defined by Equation (7.13).
We recognise three main clusters: legMax, shortLeg and all the rest. We also observe
that the Realistic instances (in brown) are in the middle of the instance space.

86

7.4. Experiments

Z1

Z2

Instance Space: Distribution of drive_mean

0 25 50 75 100

-20 -15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

20

Highcharts.com

(a) Average leg length

Z1

Z2

Instance Space: Distribution of std_mean_rro

0 5 10 15

-20 -15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

20

Highcharts.com

(b) stdMeanRRO

Z1

Z2

Instance Space: Distribution of max_total_time_per_tour

0 500 1000 1500

-20 -15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

20

Highcharts.com

(c) Max Total Time x Tour

Z1

Z2

Instance Space: Distribution of min_total_time_per_tour

0 25 50 75 100 1…

-20 -15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

20

Highcharts.com

(d) Min Total Time x tour

Figure 7.7: Distribution of four of the selected features, from minimal (blue) to maximal
(yellow) values of each scaled feature. Axes as defined by the Equation (7.13).

87

7. ISA for the BDSP

Z1

Z2

Instance Space: Distribution of LNS (Binary)

boundary likely boundary Good Performance Bad Performance

-20 -15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

20

Highcharts.com

(a) LNS

Z1

Z2

Instance Space: Distribution of CMSA (Binary)

boundary likely boundary Good Performance Bad Performance

-20 -15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

20

Highcharts.com

(b) CMSA

Figure 7.8: Binary performance distribution. We see that CMSA performs better in some
of the new generated instances close to the boundary.

88

7.4. Experiments

Z1

Z2

SVM Selection

CMSA LNS boundary likely boundary

-20 -15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

20

Highcharts.com

Figure 7.9: Recommended algorithms from SVM prediction models.

Equation (7.13) shows the projection matrix applied to the ten features after the prepro-
cessing, that includes normalisation, and Box-Cox transformation [SMMn23]. We used
ten features as it is the standard parameter value in MATILDA. We observe that four
out of ten features describe the distribution of drive, that is, the leg length. Two features
are related to the Total Time per Tour, i.e., the maximum and minimum total span of
each tour, from the very beginning to the very end. The other four features describe the
distribution of the Relative Relief Opportunities.

Figure 7.6 shows the distribution of the instance sources described in Table 7.4 across
the instance space. We notice that Realistic instances are located around the centre of
the instance space, meaning that the feature values are average. Moreover, shortLeg and
legMax instances appear to be close to the theoretical boundary of the instance space.
Those are instances where the leg length has drastically changed from the value of the
Realistic instances. The red solid outer line represents the theoretical boundaries made
by considering all the feasible combinations of features and their upper and lower bounds.
The red dotted line instead is the likely boundary.

Figure 7.7 shows the distribution of four features out of the ten that are selected by

89

7. ISA for the BDSP

MATILDA. In Figure 7.7a we see that, as expected, the average length of bus legs is
very high for legMax instances (where the leg lengths are drawn uniformly at random
in the interval [20, 240]), whereas for shortLeg instances is extremely low (here the leg
length are drawn uniformly at random in the interval [5, 15]). Figure 7.7b shows the
distribution of the standard deviation (over the bus stops) of the minimum number of
Relative Relief Opportunities during the day. This essentially is related to the number
of possible changes/moves that we can do during the day for each bus stop. This value
appears to be very low among the legMax instances, where the legs are usually large and,
therefore the number of possible vehicle changes during the day is reduced. The other
two images are about the total time per tour. In Figure 7.7c we see a clear distinction
between Realistic instances and the new generated one. This is because the new generated
instances have a lower maximum of length of bus tours. Figure 7.7d shows the Minimum
total time per tour.

Figure 7.8 shows the binary performance distribution of the two algorithms. We observe
that in the middle cluster, LNS performs better than CMSA. However, CMSA appears to
have better results closer to the theoretical boundaries. Figure 7.9 shows the prediction
of the Support Vector Machine, supporting this idea.

Discussion

We believe that the “structure” of the bus tour impacts the performance of the two
algorithms. In particular, LNS removes all the bus legs in some selected bus tours. In
contrast, CMSA randomly generates a number of greedy solutions at every iteration and,
therefore, does not directly exploit the bus tours. LNS seems to perform better than
CMSA for most of the instances (including Realistic), but not for all. We observe that
CMSA gets better solutions for legMax and shortLeg instances. These instances have
very short tours. Thus, LNS does not benefit much from removing all the legs associated
with the same tour. Hence, CMSA (which does not explicitly depend on the structure of
bus tours) provides good results with no significant difference from the others.

Thanks to ISA, we observe that there is still a considerably extended region between the
four clusters in the instance space. This reveals opportunities to generate new instances
to fill this gap. A first possible way to do that is by changing or adding parameters of
the instance generator and trying to explore the instance space.

A more elaborated option is to fix a target (e.g., a portion of the instance space to fill
up) and generate instances through a Genetic Algorithm that evolves new instances
in the desirable region, as done by Smith-Miles [SMB15]. However, this procedure is
problem-dependent and requires more investigation.

7.5 Conclusions
In this chapter, we have applied Instance Space Analysis to the Bus Driver Scheduling
Problem for the first time. We evaluated the performance of two metaheuristic techniques

90

7.5. Conclusions

for the BDSP, providing insights into the strength of LNS and the boundaries of its good
performance. We greatly increased the capabilities of the instance generator and extended
the previous set of instances with new, diverse ones. We defined and evaluated a novel
set of features, seeing which features help the most to explain algorithm performance.

Compared to the new instances, the realistic instances do not allow us to identify unique
strengths and weaknesses of CMSA and LNSstudied (they are easy for both, and if one
doesn’t beat the other, it is very close). Consequently, their value as discriminating
benchmarks, at least for these two highly competitive algorithms, is limited.

In the future, we want to fill the instance space by creating more instances that are
even more diverse than the ones present now. At first, we will consider other public
transportation systems, possibly located in different countries. Then, we will create
instances with new combinations of parameters like long leg lengths and short bus tour
lengths. Ideally, we want to use a Genetic Algorithm to automatically evolve the instances
to fill up certain regions in the instance space. The goal is to perform automatic algorithm
selection and outline the region of the instance space where one algorithm performs better
than another. Thanks to this problem’s structure, this will also be helpful for related
problems such as vehicle routing.

Furthermore, we will test other solution methods using other quality metrics, such as
the GAP from the best-known solution or the area under the curve of the trajectory of
solutions found during the search.

91

CHAPTER 8
Conclusions

In this thesis, we studied the Bus Driver Scheduling Problem (BDSP), a combinatorial
optimisation problem that arises in public transport planning and scheduling. We aimed
to develop effective solution methods and a deeper understanding of the problem’s
structure rather than simply applying off-the-shelf algorithms from the literature.

8.1 Research contributions
We summarise below the main contributions of this work:

• Metaheuristic methods based on Tabu Search First, we developed metaheuris-
tic methods based on Tabu Search local search. We thoroughly investigated the
impact of those algorithms’ parameters and components, and tuned the parameters
to identifying which setting lead to better solutions.

• Hybrid algorithm combining heuristics and Column Generation Then,
we designed a new hybrid method based on Large Neighbourhood Search (LNS)
together with Column Generation (CG). This approach merges the flexibility of
the heuristics with the speed and solution quality of CG, resulting in improvements
over pure heuristic and pure CG.

• Tight integration of Large Neighbourhood Search and Column Genera-
tion We proposed a new, tight integration between Large Neighbourhood Search
and Column Generation. In our approach, the solutions generated from each
subproblem are stored to improve subsequent iterations, resulting in significantly
faster convergence and better overall solutions.

• Publicly available, diverse instance set To gain insight into the strengths and
weaknesses of existing algorithms, we generated a larger and more diverse set of test

93

8. Conclusions

instances. All of these instances have been made publicly available so that future
researchers can run experiments and compare our results to their new approaches.

• Instance Space Analysis for the BDSP We proposed a set of instance features
to characterise similarities and differences among test cases. These features include,
for example, the number of bus tours, the average passenger demand, and network
connectivity measures.

8.2 Results

From the extensive computational experiments and analyses presented in this work, we
learnt the following lessons:

• Good enough is better than optimal Running experiments with LNS, we
compared Branch and Price (B&P) and Column Generation (CG). We discovered
that, even if CG does not achieve optimal results when solving the sub problem,
it achieves solutions that are good enough and much faster than B&P. Even if
the pure B&P remains the best method for smaller instances, our LNS results
come very close on mid-sized instances while using fewer computational resources,
making it the best choice for a wide range of realistic instance sizes. Note that
the use of CG within LNS is very limited in literature, but despite the challenging
subproblem very successful for this domain.

• Using memory to save time Even if our hybrid LNS+CG approach seems to
work extremely well, the ultimate version was the tighter integration between these
two elements. The evaluation shows that our approach provides new state-of-the-art
results for instances of all sizes, including exact solutions for small instances, and
low gaps to a known lower bound for mid-sized instances.

• Generating new, diverse instances When comparing our approach with the
previous state-of-the-art method (CMSA), the experimental results indicate that
our LNS achieves better results in the whole set of 65 instances in the literature.
We decided to investigate further and we generated instances where the opposite is
true.

• Bus-tour–related features are frequently selected We believe that the “struc-
ture” of bus tours affects our algorithms’ performance. Specifically, LNS removes
all legs belonging to some selected tours, whereas CMSA generates multiple greedy
solutions at each iteration without explicitly exploiting this tour structure. As a
result, LNS tends to outperform CMSA on most instances (including the Realistic
set), but not universally. In particular, CMSA achieves better results on instances
where tours are very short. We believe the reason is because LNS gains little by
removing all legs of a compact tour.

94

8.3. Future directions

8.3 Future directions
There are several options for continuing this work:

• First, the BDSP could be extended to consider uncertainties in the schedules or
to deal with real-time data. At the same time, one could adapt our algorithms to
work with other distinct sets of rules or collective agreements.

• Regarding Large Neighbourhood Search, a possible continuation considers the
integration with CG. In particular, currently we have only two ways to select
columns to store: either we select all the new columns generated or we select
the best subset for each subproblem. However, one can explore better trade-offs,
especially in the case of very large instances. We could also pass the best solution
so far to the background solver in the second thread to use as the initial solution.
Another future topic is applying the LNS+CG method to similar combinatorial
problems, like vehicle routing.

• For Instance Space Analysis, we want to expand the instance space, filling the gap
by generating many more, new, diverse instances. At first, we will consider other
public transportation systems, possibly located in different countries. Then, we
will create instances with new combinations of parameters. Ideally, we want to use
a Genetic Algorithm to automatically evolve the instances to fill up certain regions
in the Instance Space. The goal is to perform Automatic Algorithm Selection and
outline the region of the instance space where one algorithm performs better than
another. Furthermore, one can test other quality metrics, such as the GAP from
the best-known solution or the area under the curve of the trajectory of solutions
found during the search.

95

Overview of Generative AI Tools
Used

The use of artificial intelligence (AI) tools in this thesis was conducted in adherence to
established academic integrity protocols and ethical research standards. The used tools
are:

• Grammar checks:

– OpenAI’s ChatGPT-4o (https://openai.com/chatgpt).
– DeepSeek-R1-Lite-Preview (https://www.deepseek.com/).
– Grammarly (https://app.grammarly.com/) for proofreading, stylistic

refinement, and grammatical consistency.

• Enhancing Literature Review:

– Perplexity AI (https://www.perplexity.ai/).
– ConnectedPapers (https://www.connectedpapers.com/).
– Google NotebookLM (https://notebooklm.google.com/).

No segment of this thesis was generated or substantively influenced by ChatGPT or
other LLMs.

97

https://openai.com/chatgpt
https://www.deepseek.com/
https://app.grammarly.com/
https://www.perplexity.ai/
https://www.connectedpapers.com/
https://notebooklm.google.com/

List of Figures

1.1 The Driver Scheduling Problem is one of the stages of the Transportation
Planning System [IRDGM15]. Here, we show a simplified version. 2

2.1 ISA framework [SMMn23] . 9

3.1 Driving time constraints and required break options [KM20]. 17
3.2 Rest break positioning [KMM22] . 18
3.3 Example shift s = {ℓ1, ℓ2, ℓ3} [KMM22] 20

4.1 Graph from ConnectedPapers . 27

5.1 Fred Glover and I at MIC 2024, Lorient (France) 30
5.2 Illustration of (a) Shift Move and (b) Swap Move. 32
5.3 Comparison of Tabu Search neighbourhoods: Objective function values . 39
5.4 Comparison of Tabu Search neighbourhoods: GAP comparison 40
5.5 Comparison of the three components of Iterated Local Search 41
5.6 Critical difference plot for all the 65 instances. Groups of algorithms that are

not significantly different (at p = 0.05) are connected. 46

6.1 Comparison of repair operators . 58
6.2 GAP for different values of k0 . 59
6.3 GAP for different subsets of destroyers . 59
6.4 Success rate for different subsets of destroyers 59
6.5 Comparison for different values of nmax 60
6.6 GAP for adaptive and static LNS . 61
6.7 Two step functions and their average. 63
6.8 Metrics of different LNS integrations . 64
6.9 GAP for different LNS integrations . 65
6.10 Convergence plots . 65
6.11 Memory usage of different LNS integrations 66
6.12 Results grouped by size. 68
6.13 Critical Difference plot . 69

7.1 Example of distributions . 73
7.2 Normal distribution N (0, 50). 75

99

7.3 Samples of 1000 points drawn from the Normal distribution N (0, µ), varying
values of σ. The larger the standard deviation σ is, the more spread the
distribution is. 76

7.4 Demand distribution . 80
7.5 Demand Distribution of active vehicles. 84
7.6 Bus Driver Scheduling Problem instance space defined by Equation (7.13).

We recognise three main clusters: legMax, shortLeg and all the rest. We
also observe that the Realistic instances (in brown) are in the middle of the
instance space. 86

7.7 Distribution of four of the selected features, from minimal (blue) to maximal
(yellow) values of each scaled feature. Axes as defined by the Equation (7.13). 87

7.8 Binary performance distribution. We see that CMSA performs better in some
of the new generated instances close to the boundary. 88

7.9 Recommended algorithms from SVM prediction models. 89

100

List of Tables

3.1 A toy example with two bus tours from [KMM22] 15

5.1 Parameters tuned . 37
5.2 Results for the benchmark instances grouped by size. The time values are in

seconds. 43
5.3 Computational results for instances of size 100. The time values are in seconds. 44
5.4 Results for larger instances. 45

6.1 LNS variants . 56
6.2 Results for different solution methods grouped by size 68

7.1 Parameters used for the generation of positions. In the last column, the values
used for realistic instances are stated. 74

7.2 Parameters used for the generation of distances. 78
7.3 Parameters for the demand distribution 80
7.4 The 12 instance classes. The third column gives the value for the existing

benchmark instances. 82
7.5 Set of 84 features used in Meta-Data. With glorious seven we mean the seven

descriptive statistics: Max, Min, Average, Median, Std, First quartile and
Third quartile. 83

101

List of Algorithms

5.1 Tabu Search . 32

5.2 First Improvement . 34

5.3 Iterated Local Search . 35

6.1 Large Neighbourhood Search . 50

6.2 Adaptive Large Neighbourhood Search 53

103

Glossary

Bus Leg A trip of a vehicle between two stops; in our implementation, a bus leg is
a quintuple. The word leg denotes a portion of a journey, as specified by the
definition 5 of Pearson Longman dictionary. Other common words are: spell, and
piece-of-work. . 14

Bus Tour A sequence of bus legs assigned to one bus, starting with a departure from
the depot and finishing with a return to the depot. Other common words are:
Running Board (UK) and Block (North America).. 14, 78

CPLEX IBM® ILOG® CPLEX Commercial MIP Solver. https://www.ibm.com/
products/ilog-cplex-optimization-studio/cplex-optimizer. 24,
57, 85

Exact algorithms Algorithms that, if they terminate, provide the optimal solution.
For example, Branch and Price (B&P) or Branch and Bound. 25, 26

LSMC Large-Step Markov Chain, sometimes called Metropolis criterion. Assume we
have the incumbent solution S. A new solution S′ is accepted with probability
e

z(S)−z(S′)
T , where T ∈ R+ is a parameter that has to be tuned. 36

MATILDA Melbourne Algorithm Test Instance Library with Data Analytics. It is
a software capable of performing Instance Space Analysis. https://matilda.
unimelb.edu.au/. 85, 89, 90

OpenJDK Open Source implementation of Java. https://openjdk.org/. 57, 85

PyPy A fast and just-in-time implementation of Python. According to their website,
PyPy is about 3 times faster than CPython 3.11 https://pypy.org/. 85

105

https://www.ldoceonline.com/dictionary/leg
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://matilda.unimelb.edu.au/
https://matilda.unimelb.edu.au/
https://openjdk.org/
https://pypy.org/

Acronyms

ALNS Adaptive Large Neighbourhood Search. 54

B&P Branch and Price. xi, 3–6, 24, 29, 30, 40, 42, 46, 47, 49, 51, 52, 55, 94, 105

BDSP Bus Driver Scheduling Problem. xi, 1–6, 13, 14, 16, 21, 24–26, 29, 46, 47, 49, 70,
71, 86, 90, 93–95, 100

CG Column Generation. xi, 3–6, 54, 55, 61, 62, 70, 85, 93–95

CMSA Construct, Merge, Solve & Adapt. 4–6, 26, 70–72, 82, 85, 88, 90, 91, 94, 100

HC Hill Climbing. 3, 40, 42, 46

ILP Integer Linear Programming. 26

ILS Iterated Local Search. xi, 3, 5, 6, 35–40, 42, 46, 47

ISA Instance Space Analysis. xi, 2, 4–6, 9, 71, 81, 82, 85, 90, 94, 95, 105

LNS Large Neighbourhood Search. xi, 3–6, 49, 50, 54–57, 60, 61, 63, 66, 67, 69–72, 82,
85, 90, 91, 93–95

RCSPP Resource Constrained Shortest Path Problem. 26, 70

SA Simulated Annealing. 3, 30, 36, 40, 42, 46

TS Tabu Search. xi, 3, 5, 6, 31, 34, 36, 38–40, 42, 46, 47, 67, 93

107

Bibliography

[BGM+10] Andreas Beer, Johannes Gärtner, Nysret Musliu, Werner Schafhauser,
and Wolfgang Slany. An AI-Based Break-Scheduling System for Supervi-
sory Personnel. IEEE Intelligent Systems, 25(2):60–73, March 2010.

[BJN+98] Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Martin WP
Savelsbergh, and Pamela H Vance. Branch-and-price: Column generation
for solving huge integer programs. Operations research, 46(3):316–329,
1998.

[BLR90] Jean-Yves Blais, Jacques Lamont, and Marc Rousseau. The hastus
vehicle and manpower scheduling system at the société de transport de
la communauté urbaine de montréal. Interfaces, 20(1):26–42, 1990.

[CdMdA+17] Ademir Aparecido Constantino, Candido FX de Mendonca, Silvio Alexan-
dre de Araujo, Dario Landa-Silva, Rogério Calvi, and Allainclair Flausino
dos Santos. Solving a large real-world bus driver scheduling problem
with a multi-assignment based heuristic algorithm. Journal of Universal
Computer Science, 23(5), 2017.

[Ced16] Avishai Ceder. Public transit planning and operation: Modeling, practice
and behavior. CRC press, 2016.

[CMS19] Leandro do Carmo Martins and Gustavo Peixoto Silva. An adaptive
large neighborhood search heuristic to solve the crew scheduling problem.
In Smart and Digital Cities, pages 45–64. Springer, 2019.

[Com25] European Commission. Driving time and rest periods, 2025. Accessed:
2025-02-20.

[CS16] Borja Calvo and Guzmán Santafé. scmamp: Statistical Comparison of
Multiple Algorithms in Multiple Problems. The R Journal, 8(1):248–256,
2016.

[CSSC13] Shijun Chen, Yindong Shen, Xuan Su, and Heming Chen. A Crew
Scheduling with Chinese Meal Break Rules. Journal of Transportation
Systems Engineering and Information Technology, 13(2):90–95, April
2013.

109

[DLFM11] Renato De Leone, Paola Festa, and Emilia Marchitto. Solving a bus driver
scheduling problem with randomized multistart heuristics. International
Transactions in Operational Research, 18(6):707–727, 2011.

[DS89] Martin Desrochers and François Soumis. A column generation approach
to the urban transit crew scheduling problem. Transportation Science,
23(1):1–13, feb 1989.

[EGSNL23] Guillermo Esquivel-González, Antonio Sedeño-Noda, and Ginés León.
The problem of assigning bus drivers to trips in a spanish public transport
company. Engineering Optimization, 55(9):1597–1615, 2023.

[FMT87] Matteo Fischetti, Silvano Martello, and Paolo Toth. The fixed job
schedule problem with spread-time constraints. Operations Research,
35(6):849–858, 1987.

[FMT89] Matteo Fischetti, Silvano Martello, and Paolo Toth. The fixed job
schedule problem with working-time constraints. Operations Research,
37(3):395–403, 1989.

[FPW02] S Fores, L Proll, and A Wren. TRACS II: a hybrid IP/heuristic driver
scheduling system for public transport. Journal of the Operational
Research Society, 53(10):1093–1100, oct 2002.

[Glo86] Fred Glover. Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research, 13(5):533–549, 1986.
Applications of Integer Programming.

[GP19] Michel Gendreau and Jean-Yves Potvin, editors. Handbook of Meta-
heuristics, volume 272 of International Series in Operations Research &
Management Science. Springer International Publishing, Cham, 2019.

[ID05] Stefan Irnich and Guy Desaulniers. Shortest path problems with resource
constraints. In Column generation, pages 33–65. Springer, 2005.

[IRDGM15] Omar J Ibarra-Rojas, Felipe Delgado, Ricardo Giesen, and Juan Carlos
Muñoz. Planning, operation, and control of bus transport systems:
A literature review. Transportation Research Part B: Methodological,
77:38–75, 2015.

[Kle22] Lucas Kletzander. Automated solution methods for complex real-life
personnel scheduling problems. PhD thesis, Technische Universität Wien,
2022.

[KM20] Lucas Kletzander and Nysret Musliu. Solving large real-life bus driver
scheduling problems with complex break constraints. Proceedings of
the International Conference on Automated Planning and Scheduling,
30(1):421–429, June 2020.

110

[KMM22] Lucas Kletzander, Tommaso Mannelli Mazzoli, and Nysret Musliu. Meta-
heuristic algorithms for the bus driver scheduling problem with complex
break constraints. In Proceedings of the Genetic and Evolutionary Com-
putation Conference. ACM, July 2022.

[KMVH21] Lucas Kletzander, Nysret Musliu, and Pascal Van Hentenryck. Branch
and price for bus driver scheduling with complex break constraints. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 35(13):11853–
11861, May 2021.

[LEF+22] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André
Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass,
and Frank Hutter. Smac3: A versatile bayesian optimization package for
hyperparameter optimization. Journal of Machine Learning Research,
23(54):1–9, 2022.

[LH16] Dung-Ying Lin and Ching-Lan Hsu. A column generation algorithm for
the bus driver scheduling problem. Journal of Advanced Transportation,
50(8):1598–1615, 2016.

[LK03] Jingpeng Li and Raymond S.K. Kwan. A fuzzy genetic algorithm for
driver scheduling. European Journal of Operational Research, 147(2):334–
344, 2003. Fuzzy Sets in Scheduling and Planning.

[LMS19] Helena Ramalhinho Lourenço, Olivier C. Martin, and Thomas Stüt-
zle. Iterated Local Search: Framework and Applications, pages 129–168.
Handbook of Metaheuristics, editors Michel Gendreau and Jean-Yves
Potvin, Springer International Publishing, Cham, 2019.

[LPP01] Helena R. Lourenço, José P. Paixão, and Rita Portugal. Multiobjective
metaheuristics for the bus driver scheduling problem. Transportation
Science, 35(3):331–343, 2001.

[LSMC20] Kelvin Liu, Kate Smith-Miles, and Alysson Costa. Using Instance Space
Analysis to Study the Bin Packing Problem. PhD thesis, PhD thesis,
2020.

[MKHM24] Tommaso Mannelli Mazzoli, Lucas Kletzander, Pascal Van Hentenryck,
and Nysret Musliu. Investigating large neighbourhood search for bus
driver scheduling. In 34th International Conference on Automated Plan-
ning and Scheduling, 2024.

[MMKMSM24] Tommaso Mannelli Mazzoli, Lucas Kletzander, Nysret Musliu, and Kate
Smith-Miles. Instance space analysis for the bus driver scheduling prob-
lem. In Proceedings of the Practice and Theory of Automated Timetabling,
pages 20–35, 2024.

111

[MT86] Silvano Martello and Paolo Toth. A heuristic approach to the bus driver
scheduling problem. European Journal of Operational Research, 24(1):106–
117, 1986. OR and Microcomputers Miscellaneous OR Applications.

[PLP08] Rita Portugal, Helena R. Lourenço, and José P. Paixão. Driver scheduling
problem modelling. Public Transport, 1(2):103–120, nov 2008.

[PPÁME24] D Pardo-Peña, D Álvarez-Martínez, and J Escobar. A grasp algorithm
for the bus crew scheduling problem. International Journal of Industrial
Engineering Computations, 15(2):443–456, 2024.

[Pre15] Mike Preuss. Experimentation in Evolutionary Computation, pages 27–54.
Springer, 2015.

[PS98] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial opti-
mization: algorithms and complexity. Courier Corporation, 1998.

[Ric76] John R. Rice. The algorithm selection problem. pages 65–118, 1976.

[RKB+23] Roberto Maria Rosati, Lucas Kletzander, Christian Blum, Nysret Musliu,
and Andrea Schaerf. Construct, merge, solve and adapt applied to a bus
driver scheduling problem with complex break constraints. In AIxIA 2022
– Advances in Artificial Intelligence, pages 254–267. Springer International
Publishing, 2023.

[RMVP13] Ana Respício, Margarida Moz, and Margarida Vaz Pato. Enhanced
genetic algorithms for a bi-objective bus driver rostering problem: a
computational study. International Transactions in Operational Research,
20(4):443–470, 2013.

[RP06] Stefan Ropke and David Pisinger. An adaptive large neighborhood
search heuristic for the pickup and delivery problem with time windows.
Transportation Science, 40(4):455–472, nov 2006.

[scm] https://github.com/b0rxa/scmamp/tree/
e435f9d48078f93ab49b23a19fdb6ef6e12ea5f9. Accessed:
2023-08=15.

[Sha98] Paul Shaw. Using constraint programming and local search methods to
solve vehicle routing problems. In Principles and Practice of Constraint
Programming — CP98, pages 417–431. Springer Berlin Heidelberg, 1998.

[SK01a] Yindong Shen and Raymond S. K. Kwan. Tabu Search for Driver Schedul-
ing. In G. Fandel, W. Trockel, C. D. Aliprantis, Dan Kovenock, Stefan
Voß, and Joachim R. Daduna, editors, Computer-Aided Scheduling of
Public Transport, volume 505, pages 121–135. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2001. Series Title: Lecture Notes in Economics and
Mathematical Systems.

112

https://github.com/b0rxa/scmamp/tree/e435f9d48078f93ab49b23a19fdb6ef6e12ea5f9
https://github.com/b0rxa/scmamp/tree/e435f9d48078f93ab49b23a19fdb6ef6e12ea5f9

[SK01b] Yindong Shen and Raymond S. K. Kwan. Tabu Search for Driver Schedul-
ing. In G. Fandel, W. Trockel, C. D. Aliprantis, Dan Kovenock, Stefan
Voß, and Joachim R. Daduna, editors, Computer-Aided Scheduling of
Public Transport, volume 505, pages 121–135. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2001.

[SMB15] Kate Smith-Miles and Simon Bowly. Generating new test instances by
evolving in instance space. Computers & Operations Research, 63:102–
113, 2015.

[SMBWL14] Kate Smith-Miles, Davaatseren Baatar, Brendan Wreford, and Rhyd
Lewis. Towards objective measures of algorithm performance across
instance space. Computers & Operations Research, 45:12–24, 2014.

[Smi88] Barbara M Smith. Impacs-a bus crew scheduling system using integer
programming. Mathematical Programming, 42(1):181–187, 1988.

[SMMN20] K. Smith-Miles, M.A. Muñoz, and Neelofar. Melbourne algorithm test
instance library with data analytics (matilda), 2020. Available online.

[SMMn23] Kate Smith-Miles and Mario Andrés Muñoz. Instance space analysis for
algorithm testing: Methodology and software tools. ACM Comput.
Surv., 55(12), mar 2023.

[SS15] Tiago Alves Silva and Gustavo Peixoto Silva. O uso da metaheurística
guided local search para resolver o problema de escala de motoristas de
ônibus urbano. TRANSPORTES, 23(2):105, August 2015.

[SW88] Barbara M. Smith and Anthony Wren. A bus crew scheduling system us-
ing a set covering formulation. Transportation Research Part A: General,
22(2):97–108, 1988.

[TK13] Attila Tóth and Miklós Krész. An efficient solution approach for real-
world driver scheduling problems in urban bus transportation. Central
European Journal of Operations Research, 21(S1):75–94, June 2013.

[WCM24] Mengtong Wang, Shukai Chen, and Qiang Meng. Robust safety driver
scheduling for autonomous buses. Transportation research part B: method-
ological, 184:102965, 2024.

[WFK+03] Anthony Wren, Sarah Fores, Ann Kwan, Raymond Kwan, Margaret
Parker, and Les Proll. A flexible system for scheduling drivers. Journal
of Scheduling, 6:437–455, 2003.

[Wir19] Wirtschaftskammer Österreich. Kollektivvertrag für private auto-
busbetriebe 2019. https://www.wko.at/kollektivvertrag/
kv-private-autobusbetriebe-2019, 2019. Accessed: 2023-10-
02.

113

https://www.wko.at/kollektivvertrag/kv-private-autobusbetriebe-2019
https://www.wko.at/kollektivvertrag/kv-private-autobusbetriebe-2019

[WM14] Magdalena Widl and Nysret Musliu. The break scheduling problem:
complexity results and practical algorithms. Memetic Computing, 6(2):97–
112, June 2014.

[WR95] Anthony Wren and Jean-Marc Rousseau. Bus driver scheduling—an
overview. In Computer-Aided Transit Scheduling: Proceedings of the
Sixth International Workshop on Computer-Aided Scheduling of Public
Transport, pages 173–187. Springer, 1995.

[Wre04] Anthony Wren. Scheduling vehicles and their drivers-forty years’ experi-
ence. Technical report, University of Leed, 2004.

114

	Abstract
	Contents
	Introduction
	Research Goals
	Summary of Contributions
	Publications
	Organisation

	Preliminaries
	Notations, Symbols, and Definitions
	Instance Space Analysis
	Experiments

	The Bus Driver Scheduling Problem
	Background
	Problem Description
	Benchmark Instances

	Related Work
	Variants
	Exact methods
	Heuristic and Hybrid methods

	Metaheuristics for the BDSP
	Related work
	Tabu Search
	Iterated Local Search
	Conclusions

	Large Neighbourhood Search for the BDSP
	Large Neighbourhood Search
	Integration of Column Generation and Large Neighbourhood Search
	Experiments
	Conclusions

	ISA for the BDSP
	Mathematical preliminaries
	Instance Generator
	Instance Space Analysis
	Experiments
	Conclusions

	Conclusions
	Research contributions
	Results
	Future directions

	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Acronyms
	Bibliography

